Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.11408
Cited By
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
23 April 2020
Gabriel Riutort-Mayol
Paul-Christian Burkner
Michael R. Andersen
Arno Solin
Aki Vehtari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming"
7 / 7 papers shown
Title
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
27
3
0
02 May 2024
Generalised Linear Mixed Model Specification, Analysis, Fitting, and Optimal Design in R with the glmmr Packages
S. Watson
13
3
0
22 Mar 2023
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
24
1
0
15 Oct 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
20
10
0
12 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
41
40
0
09 Aug 2021
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
21
125
0
15 Sep 2020
MCMC using Hamiltonian dynamics
Radford M. Neal
176
3,260
0
09 Jun 2012
1