ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11690
  4. Cited By
Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
  Implementation for Edge Motor-Imagery Brain--Machine Interfaces

Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet Implementation for Edge Motor-Imagery Brain--Machine Interfaces

24 April 2020
Tibor Schneider
Xiaying Wang
Michael Hersche
Lukas Cavigelli
Luca Benini
ArXivPDFHTML

Papers citing "Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet Implementation for Edge Motor-Imagery Brain--Machine Interfaces"

4 / 4 papers shown
Title
Enabling Design Methodologies and Future Trends for Edge AI:
  Specialization and Co-design
Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Co-design
Cong Hao
Jordan Dotzel
Jinjun Xiong
Luca Benini
Zhiru Zhang
Deming Chen
50
34
0
25 Mar 2021
Towards Real-World BCI: CCSPNet, A Compact Subject-Independent Motor
  Imagery Framework
Towards Real-World BCI: CCSPNet, A Compact Subject-Independent Motor Imagery Framework
Mahbod Nouri
Faraz Moradi
Hafez Ghaemi
A. Nasrabadi
14
10
0
25 Dec 2020
Binarization Methods for Motor-Imagery Brain-Computer Interface
  Classification
Binarization Methods for Motor-Imagery Brain-Computer Interface Classification
Michael Hersche
Luca Benini
Abbas Rahimi
MQ
18
8
0
14 Oct 2020
EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
  Motor-Imagery Brain-Machine Interfaces
EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded Motor-Imagery Brain-Machine Interfaces
T. Ingolfsson
Michael Hersche
Xiaying Wang
Nobuaki Kobayashi
Lukas Cavigelli
Luca Benini
19
190
0
31 May 2020
1