ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12045
  4. Cited By
The Dynamic Travelling Thief Problem: Benchmarks and Performance of
  Evolutionary Algorithms
v1v2v3 (latest)

The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms

25 April 2020
Ragav Sachdeva
Frank Neumann
Markus Wagner
ArXiv (abs)PDFHTML

Papers citing "The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms"

5 / 5 papers shown
Title
Weighted-Scenario Optimisation for the Chance Constrained Travelling Thief Problem
Weighted-Scenario Optimisation for the Chance Constrained Travelling Thief Problem
Thilina Pathirage Don
Aneta Neumann
Frank Neumann
60
0
0
01 May 2025
Solving Travelling Thief Problems using Coordination Based Methods
Solving Travelling Thief Problems using Coordination Based Methods
M. Namazi
M. A. Hakim Newton
Conrad Sanderson
Abdul Sattar
65
7
0
11 Oct 2023
Generating Instances with Performance Differences for More Than Just Two
  Algorithms
Generating Instances with Performance Differences for More Than Just Two Algorithms
Jakob Bossek
Markus Wagner
85
5
0
29 Apr 2021
Benchmarking in Optimization: Best Practice and Open Issues
Benchmarking in Optimization: Best Practice and Open Issues
Thomas Bartz-Beielstein
Carola Doerr
Daan van den Berg
Jakob Bossek
Sowmya Chandrasekaran
...
B. Naujoks
Patryk Orzechowski
Vanessa Volz
Markus Wagner
T. Weise
138
112
0
07 Jul 2020
A Non-Dominated Sorting Based Customized Random-Key Genetic Algorithm
  for the Bi-Objective Traveling Thief Problem
A Non-Dominated Sorting Based Customized Random-Key Genetic Algorithm for the Bi-Objective Traveling Thief Problem
Jonatas B. C. Chagas
Julian Blank
Markus Wagner
M. Souza
Kalyanmoy Deb
51
21
0
11 Feb 2020
1