ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12157
  4. Cited By
A Bayesian machine scientist to aid in the solution of challenging
  scientific problems

A Bayesian machine scientist to aid in the solution of challenging scientific problems

25 April 2020
Roger Guimerà
I. Reichardt
Antoni Aguilar-Mogas
F. Massucci
Manuel Miranda
J. Pallarés
Marta Sales-Pardo
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "A Bayesian machine scientist to aid in the solution of challenging scientific problems"

44 / 44 papers shown
Title
KAN-SR: A Kolmogorov-Arnold Network Guided Symbolic Regression Framework
KAN-SR: A Kolmogorov-Arnold Network Guided Symbolic Regression Framework
Marco Andrea Bühler
Gonzalo Guillén-Gosálbez
0
0
0
12 Sep 2025
Data-driven Discovery of Digital Twins in Biomedical Research
Data-driven Discovery of Digital Twins in Biomedical Research
Clémence Métayer
Annabelle Ballesta
Julien Martinelli
20
0
0
29 Aug 2025
Bayesian symbolic regression: Automated equation discovery from a physicists' perspective
Bayesian symbolic regression: Automated equation discovery from a physicists' perspective
Roger Guimerà
Marta Sales-Pardo
46
0
0
22 Jul 2025
On the definition and importance of interpretability in scientific machine learning
On the definition and importance of interpretability in scientific machine learning
Conor Rowan
Alireza Doostan
AI4CE
180
1
0
16 May 2025
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
213
6
0
30 Mar 2025
Gravity-Bench-v1: A Benchmark on Gravitational Physics Discovery for Agents
Gravity-Bench-v1: A Benchmark on Gravitational Physics Discovery for Agents
Nolan Koblischke
Hyunseok Jang
Kristen Menou
M. Ali-Dib
209
2
0
30 Jan 2025
Generalizing the SINDy approach with nested neural networks
Generalizing the SINDy approach with nested neural networks
Camilla Fiorini
Clément Flint
Louis Fostier
Emmanuel Franck
Reyhaneh Hashemi
Victor Michel-Dansac
Wassim Tenachi
199
3
0
28 Jan 2025
In Context Learning and Reasoning for Symbolic Regression with Large Language Models
In Context Learning and Reasoning for Symbolic Regression with Large Language Models
Samiha Sharlin
Tyler R. Josephson
ReLMLLMAGLRM
163
3
0
22 Oct 2024
Quantifying Behavioural Distance Between Mathematical Expressions
Quantifying Behavioural Distance Between Mathematical Expressions
Sebastian Mežnar
Sašo Džeroski
Ljupčo Todorovski
76
1
0
21 Aug 2024
Active learning of digenic functions with boolean matrix logic
  programming
Active learning of digenic functions with boolean matrix logic programming
L. Ai
Stephen Muggleton
Shi-shun Liang
Geoff S. Baldwin
59
0
0
19 Aug 2024
Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models
Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models
L. Ai
Stephen Muggleton
Shishun Liang
Geoff S. Baldwin
155
2
0
10 May 2024
The Inefficiency of Genetic Programming for Symbolic Regression --
  Extended Version
The Inefficiency of Genetic Programming for Symbolic Regression -- Extended Version
G. Kronberger
Fabrício Olivetti de França
Harry Desmond
Deaglan J. Bartlett
Lukas Kammerer
90
6
0
26 Apr 2024
Discovering interpretable models of scientific image data with deep
  learning
Discovering interpretable models of scientific image data with deep learning
Christopher J. Soelistyo
Alan R. Lowe
102
7
0
05 Feb 2024
Exploring the Truth and Beauty of Theory Landscapes with Machine
  Learning
Exploring the Truth and Beauty of Theory Landscapes with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
110
2
0
21 Jan 2024
Seeking Truth and Beauty in Flavor Physics with Machine Learning
Seeking Truth and Beauty in Flavor Physics with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
AI4CE
87
2
0
31 Oct 2023
Optimal Inflationary Potentials
Optimal Inflationary Potentials
Tomás Sousa
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
100
5
0
25 Oct 2023
Machine learning in physics: a short guide
Machine learning in physics: a short guide
F. A. Rodrigues
PINNAI4CE
77
9
0
16 Oct 2023
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers
Stéphane d’Ascoli
Soren Becker
Alexander Mathis
Philippe Schwaller
Niki Kilbertus
118
33
0
09 Oct 2023
Racing Control Variable Genetic Programming for Symbolic Regression
Racing Control Variable Genetic Programming for Symbolic Regression
Nan Jiang
Yexiang Xue
92
4
0
13 Sep 2023
Evolving Scientific Discovery by Unifying Data and Background Knowledge
  with AI Hilbert
Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert
Ryan Cory-Wright
Cristina Cornelio
S. Dash
Bachir El Khadir
L. Horesh
131
17
0
18 Aug 2023
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Tim Schneider
A. Totounferoush
Wolfgang Nowak
Steffen Staab
150
0
0
14 Jun 2023
Using generative AI to investigate medical imagery models and datasets
Using generative AI to investigate medical imagery models and datasets
Oran Lang
Doron Stupp
I. Traynis
Heather Cole-Lewis
Chloe R. Bennett
...
Avinatan Hassidim
Yossi Matias
Yao Xiao
N. Hammel
Boris Babenko
MedIm
133
33
0
01 Jun 2023
Symbolic Regression via Control Variable Genetic Programming
Symbolic Regression via Control Variable Genetic Programming
Nan Jiang
Yexiang Xue
96
10
0
25 May 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINNAI4ClAI4CECML
146
86
0
21 May 2023
Active Learning in Symbolic Regression with Physical Constraints
Active Learning in Symbolic Regression with Physical Constraints
Jorge Medina
Andrew D. White
93
3
0
17 May 2023
Automated Scientific Discovery: From Equation Discovery to Autonomous Discovery Systems
Automated Scientific Discovery: From Equation Discovery to Autonomous Discovery Systems
Stefan Kramer
Mattia Cerrato
Jannis Brugger
Sašo Džeroski
Ross King
146
14
0
03 May 2023
Interpretable Machine Learning for Science with PySR and
  SymbolicRegression.jl
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
M. Cranmer
175
52
0
02 May 2023
Automatically identifying ordinary differential equations from data
Automatically identifying ordinary differential equations from data
Kevin Egan
Weizhen Li
Rui Carvalho
81
2
0
21 Apr 2023
Priors for symbolic regression
Priors for symbolic regression
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
98
6
0
13 Apr 2023
Machine learning for discovering laws of nature
Machine learning for discovering laws of nature
Lizhi Xin
Kevin Xin
H. Xin
AI4CE
99
0
0
18 Mar 2023
Deep symbolic regression for physics guided by units constraints: toward
  the automated discovery of physical laws
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
AI4CE
105
97
0
06 Mar 2023
Efficient Generator of Mathematical Expressions for Symbolic Regression
Efficient Generator of Mathematical Expressions for Symbolic Regression
Sebastian Mežnar
Jannis Brugger
L. Todorovski
134
15
0
20 Feb 2023
Incorporating Background Knowledge in Symbolic Regression using a
  Computer Algebra System
Incorporating Background Knowledge in Symbolic Regression using a Computer Algebra System
Charles Fox
Neil Tran
Nikki Nacion
Samiha Sharlin
Tyler R. Josephson
154
4
0
27 Jan 2023
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle
  Kinematics with Symbolic Regression
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle Kinematics with Symbolic Regression
Zhongtian Dong
K. Kong
Konstantin T. Matchev
Katia Matcheva
124
16
0
15 Nov 2022
Catch-22s of reservoir computing
Catch-22s of reservoir computing
Yuanzhao Zhang
Sean P. Cornelius
140
16
0
18 Oct 2022
AI-Assisted Discovery of Quantitative and Formal Models in Social
  Science
AI-Assisted Discovery of Quantitative and Formal Models in Social Science
Julia Balla
Sihao Huang
Owen Dugan
Rumen Dangovski
Marin Soljacic
164
6
0
02 Oct 2022
Simplifying Polylogarithms with Machine Learning
Simplifying Polylogarithms with Machine Learning
Aurélien Dersy
M. Schwartz
Xiao-Yan Zhang
AI4CE
242
18
0
08 Jun 2022
End-to-end symbolic regression with transformers
End-to-end symbolic regression with transformers
Pierre-Alexandre Kamienny
Stéphane dÁscoli
Guillaume Lample
Franccois Charton
159
201
0
22 Apr 2022
Fundamental limits to learning closed-form mathematical models from data
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
Marta Sales-Pardo
Roger Guimerà
124
20
0
06 Apr 2022
Rediscovering orbital mechanics with machine learning
Rediscovering orbital mechanics with machine learning
Pablo Lemos
N. Jeffrey
M. Cranmer
S. Ho
Peter W. Battaglia
PINNAI4CE
109
106
0
04 Feb 2022
Augmenting astrophysical scaling relations with machine learning:
  application to reducing the Sunyaev-Zeldovich flux-mass scatter
Augmenting astrophysical scaling relations with machine learning: application to reducing the Sunyaev-Zeldovich flux-mass scatter
D. Wadekar
L. Thiele
F. Villaescusa-Navarro
J. Hill
M. Cranmer
D. Spergel
N. Battaglia
D. Anglés-Alcázar
L. Hernquist
S. Ho
158
12
0
04 Jan 2022
AI Descartes: Combining Data and Theory for Derivable Scientific
  Discovery
AI Descartes: Combining Data and Theory for Derivable Scientific Discovery
Cristina Cornelio
S. Dash
V. Austel
Tyler R. Josephson
Joao Goncalves
K. Clarkson
N. Megiddo
Bachir El Khadir
L. Horesh
AI4CE
166
7
0
03 Sep 2021
Probabilistic Grammars for Equation Discovery
Probabilistic Grammars for Equation Discovery
Jure Brence
L. Todorovski
Jannis Brugger
143
37
0
01 Dec 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
189
517
0
19 Jun 2020
1