ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14607
  4. Cited By
Can Your Context-Aware MT System Pass the DiP Benchmark Tests? :
  Evaluation Benchmarks for Discourse Phenomena in Machine Translation

Can Your Context-Aware MT System Pass the DiP Benchmark Tests? : Evaluation Benchmarks for Discourse Phenomena in Machine Translation

30 April 2020
Prathyusha Jwalapuram
Barbara Rychalska
Shafiq Joty
Dominika Basaj
ArXiv (abs)PDFHTML

Papers citing "Can Your Context-Aware MT System Pass the DiP Benchmark Tests? : Evaluation Benchmarks for Discourse Phenomena in Machine Translation"

7 / 7 papers shown
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
Wafaa Mohammed
Vlad Niculae
Chrysoula Zerva
136
0
0
08 Oct 2025
DocHPLT: A Massively Multilingual Document-Level Translation Dataset
DocHPLT: A Massively Multilingual Document-Level Translation Dataset
Dayyán O'Brien
Bhavitvya Malik
Ona de Gibert
Pinzhen Chen
Barry Haddow
Jörg Tiedemann
157
2
0
18 Aug 2025
A baseline revisited: Pushing the limits of multi-segment models for
  context-aware translation
A baseline revisited: Pushing the limits of multi-segment models for context-aware translation
Suvodeep Majumde
Stanislas Lauly
Maria Nadejde
Marcello Federico
Georgiana Dinu
171
14
0
19 Oct 2022
When Does Translation Require Context? A Data-driven, Multilingual
  Exploration
When Does Translation Require Context? A Data-driven, Multilingual Exploration
Patrick Fernandes
Kayo Yin
Emmy Liu
Marcely Zanon Boito
Graham Neubig
204
48
0
15 Sep 2021
Revisiting Context Choices for Context-aware Machine Translation
Revisiting Context Choices for Context-aware Machine TranslationInternational Conference on Language Resources and Evaluation (LREC), 2021
Matīss Rikters
Toshiaki Nakazawa
LRM
158
6
0
07 Sep 2021
Rethinking Document-level Neural Machine Translation
Rethinking Document-level Neural Machine TranslationFindings (Findings), 2020
Zewei Sun
Mingxuan Wang
Hao Zhou
Chengqi Zhao
Shujian Huang
Jiajun Chen
Lei Li
VLM
362
53
0
18 Oct 2020
Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses
Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses
Prathyusha Jwalapuram
Shafiq Joty
Youlin Shen
139
9
0
15 Oct 2020
1
Page 1 of 1