ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00069
  4. Cited By
Occlusion resistant learning of intuitive physics from videos

Occlusion resistant learning of intuitive physics from videos

30 April 2020
Ronan Riochet
Josef Sivic
Ivan Laptev
Emmanuel Dupoux
    PINN
ArXivPDFHTML

Papers citing "Occlusion resistant learning of intuitive physics from videos"

4 / 4 papers shown
Title
3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive
  Physics under Challenging Scenes
3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive Physics under Challenging Scenes
Haotian Xue
Antonio Torralba
J. Tenenbaum
Daniel L. K. Yamins
Yunzhu Li
H. Tung
PINN
VGen
AI4CE
48
8
0
22 Apr 2023
Physion: Evaluating Physical Prediction from Vision in Humans and
  Machines
Physion: Evaluating Physical Prediction from Vision in Humans and Machines
Daniel M. Bear
E. Wang
Damian Mrowca
Felix Binder
Hsiau-Yu Fish Tung
...
Li Fei-Fei
Nancy Kanwisher
J. Tenenbaum
Daniel L. K. Yamins
Judith E. Fan
OOD
45
86
0
15 Jun 2021
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
236
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1