ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00527
  4. Cited By
Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon
  Reinforcement Learning?

Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning?

1 May 2020
Ruosong Wang
S. Du
Lin F. Yang
Sham Kakade
    OffRL
ArXivPDFHTML

Papers citing "Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning?"

22 / 22 papers shown
Title
Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
Kazumi Kasaura
33
0
0
02 Jul 2024
Multiple-policy Evaluation via Density Estimation
Multiple-policy Evaluation via Density Estimation
Yilei Chen
Aldo Pacchiano
I. Paschalidis
OffRL
32
0
0
29 Mar 2024
Horizon-Free Regret for Linear Markov Decision Processes
Horizon-Free Regret for Linear Markov Decision Processes
Zihan Zhang
Jason D. Lee
Yuxin Chen
Simon S. Du
33
3
0
15 Mar 2024
Settling the Sample Complexity of Online Reinforcement Learning
Settling the Sample Complexity of Online Reinforcement Learning
Zihan Zhang
Yuxin Chen
Jason D. Lee
S. Du
OffRL
98
22
0
25 Jul 2023
Provably Efficient Reinforcement Learning via Surprise Bound
Provably Efficient Reinforcement Learning via Surprise Bound
Hanlin Zhu
Ruosong Wang
Jason D. Lee
OffRL
28
5
0
22 Feb 2023
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both
  Worlds in Stochastic and Deterministic Environments
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
Runlong Zhou
Zihan Zhang
S. Du
44
10
0
31 Jan 2023
E-MAPP: Efficient Multi-Agent Reinforcement Learning with Parallel
  Program Guidance
E-MAPP: Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance
C. Chang
Ni Mu
Jiajun Wu
Ling Pan
Huazhe Xu
50
7
0
05 Dec 2022
Horizon-Free Reinforcement Learning in Polynomial Time: the Power of
  Stationary Policies
Horizon-Free Reinforcement Learning in Polynomial Time: the Power of Stationary Policies
Zihan Zhang
Xiangyang Ji
S. Du
30
21
0
24 Mar 2022
Settling the Horizon-Dependence of Sample Complexity in Reinforcement
  Learning
Settling the Horizon-Dependence of Sample Complexity in Reinforcement Learning
Yuanzhi Li
Ruosong Wang
Lin F. Yang
27
20
0
01 Nov 2021
Gap-Dependent Unsupervised Exploration for Reinforcement Learning
Gap-Dependent Unsupervised Exploration for Reinforcement Learning
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
33
12
0
11 Aug 2021
Nearly Horizon-Free Offline Reinforcement Learning
Nearly Horizon-Free Offline Reinforcement Learning
Tongzheng Ren
Jialian Li
Bo Dai
S. Du
Sujay Sanghavi
OffRL
32
49
0
25 Mar 2021
UCB Momentum Q-learning: Correcting the bias without forgetting
UCB Momentum Q-learning: Correcting the bias without forgetting
Pierre Menard
O. D. Domingues
Xuedong Shang
Michal Valko
79
41
0
01 Mar 2021
Improved Corruption Robust Algorithms for Episodic Reinforcement
  Learning
Improved Corruption Robust Algorithms for Episodic Reinforcement Learning
Yifang Chen
S. Du
Kevin G. Jamieson
24
22
0
13 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear
  Mixture MDP
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
71
38
0
29 Jan 2021
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal
  Algorithm Escaping the Curse of Horizon
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang
Xiangyang Ji
S. Du
OffRL
17
104
0
28 Sep 2020
Adaptive Discretization for Model-Based Reinforcement Learning
Adaptive Discretization for Model-Based Reinforcement Learning
Sean R. Sinclair
Tianyu Wang
Gauri Jain
Siddhartha Banerjee
Chao Yu
OffRL
19
21
0
01 Jul 2020
Generalisation Guarantees for Continual Learning with Orthogonal
  Gradient Descent
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
50
61
0
21 Jun 2020
$Q$-learning with Logarithmic Regret
QQQ-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
43
59
0
16 Jun 2020
Preference-based Reinforcement Learning with Finite-Time Guarantees
Preference-based Reinforcement Learning with Finite-Time Guarantees
Yichong Xu
Ruosong Wang
Lin F. Yang
Aarti Singh
A. Dubrawski
33
53
0
16 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
36
299
0
01 Jun 2020
Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
  with a Generative Model
Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model
Gen Li
Yuting Wei
Yuejie Chi
Yuxin Chen
34
125
0
26 May 2020
Reinforcement Learning with General Value Function Approximation:
  Provably Efficient Approach via Bounded Eluder Dimension
Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension
Ruosong Wang
Ruslan Salakhutdinov
Lin F. Yang
23
55
0
21 May 2020
1