ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01616
143
76

VisualEchoes: Spatial Image Representation Learning through Echolocation

4 May 2020
Ruohan Gao
Changan Chen
Ziad Al-Halah
Carl Schissler
Kristen Grauman
    MDE
    SSL
ArXivPDFHTML
Abstract

Several animal species (e.g., bats, dolphins, and whales) and even visually impaired humans have the remarkable ability to perform echolocation: a biological sonar used to perceive spatial layout and locate objects in the world. We explore the spatial cues contained in echoes and how they can benefit vision tasks that require spatial reasoning. First we capture echo responses in photo-realistic 3D indoor scene environments. Then we propose a novel interaction-based representation learning framework that learns useful visual features via echolocation. We show that the learned image features are useful for multiple downstream vision tasks requiring spatial reasoning---monocular depth estimation, surface normal estimation, and visual navigation---with results comparable or even better than heavily supervised pre-training. Our work opens a new path for representation learning for embodied agents, where supervision comes from interacting with the physical world.

View on arXiv
Comments on this paper