ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01927
  4. Cited By
StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization
  of Domain Translation and Stereo Matching

StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization of Domain Translation and Stereo Matching

5 May 2020
R. Liu
Chengxi Yang
Wenxiu Sun
Xiaogang Wang
Hongsheng Li
    GAN
    3DV
ArXivPDFHTML

Papers citing "StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization of Domain Translation and Stereo Matching"

3 / 3 papers shown
Title
ActiveZero: Mixed Domain Learning for Active Stereovision with Zero
  Annotation
ActiveZero: Mixed Domain Learning for Active Stereovision with Zero Annotation
Isabella Liu
Edward Yang
Jianyu Tao
Rui Chen
Xiaoshuai Zhang
Qing Ran
Zhuoman Liu
Hao Su
125
8
0
06 Dec 2021
Geometry-Aware Unsupervised Domain Adaptation for Stereo Matching
Geometry-Aware Unsupervised Domain Adaptation for Stereo Matching
Hiroki Sakuma
Yoshinori Konishi
16
2
0
26 Mar 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
279
10,348
0
12 Dec 2018
1