ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02505
  4. Cited By
A generative adversarial network approach to calibration of local
  stochastic volatility models

A generative adversarial network approach to calibration of local stochastic volatility models

5 May 2020
Christa Cuchiero
Wahid Khosrawi
Josef Teichmann
    GAN
ArXivPDFHTML

Papers citing "A generative adversarial network approach to calibration of local stochastic volatility models"

12 / 12 papers shown
Title
Global universal approximation of functional input maps on weighted spaces
Global universal approximation of functional input maps on weighted spaces
Christa Cuchiero
Philipp Schmocker
Josef Teichmann
34
21
0
05 Jun 2023
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
29
6
0
02 Nov 2022
Deep neural network expressivity for optimal stopping problems
Deep neural network expressivity for optimal stopping problems
Lukas Gonon
32
6
0
19 Oct 2022
Chaotic Hedging with Iterated Integrals and Neural Networks
Chaotic Hedging with Iterated Integrals and Neural Networks
Ariel Neufeld
Philipp Schmocker
39
10
0
21 Sep 2022
Risk-Neutral Market Simulation
Risk-Neutral Market Simulation
Magnus Wiese
M. Phillip
33
2
0
28 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
54
20
0
31 Jan 2022
Multi-Asset Spot and Option Market Simulation
Multi-Asset Spot and Option Market Simulation
Magnus Wiese
Ben Wood
Alexandre Pachoud
R. Korn
Hans Buehler
Phillip Murray
Lianjun Bai
32
21
0
13 Dec 2021
Sig-Wasserstein GANs for Time Series Generation
Sig-Wasserstein GANs for Time Series Generation
Hao Ni
Lukasz Szpruch
Marc Sabate Vidales
Baoren Xiao
Magnus Wiese
Shujian Liao
SyDa
AI4TS
24
73
0
01 Nov 2021
Random feature neural networks learn Black-Scholes type PDEs without
  curse of dimensionality
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
28
35
0
14 Jun 2021
Robust pricing and hedging via neural SDEs
Robust pricing and hedging via neural SDEs
Patryk Gierjatowicz
Marc Sabate Vidales
David Siska
Lukasz Szpruch
Zan Zuric
27
34
0
08 Jul 2020
Consistent Recalibration Models and Deep Calibration
Consistent Recalibration Models and Deep Calibration
Matteo Gambara
Josef Teichmann
33
5
0
16 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
32
451
0
18 May 2020
1