ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.03353
  4. Cited By
Distributional robustness of K-class estimators and the PULSE
v1v2v3 (latest)

Distributional robustness of K-class estimators and the PULSE

7 May 2020
M. E. Jakobsen
J. Peters
    OOD
ArXiv (abs)PDFHTML

Papers citing "Distributional robustness of K-class estimators and the PULSE"

10 / 10 papers shown
Title
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
148
3
0
04 Feb 2025
Identifying Representations for Intervention Extrapolation
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CMLOOD
84
16
0
06 Oct 2023
Identifiability of Sparse Causal Effects using Instrumental Variables
Identifiability of Sparse Causal Effects using Instrumental Variables
Niklas Pfister
J. Peters
CML
59
10
0
17 Mar 2022
Identifying Causal Effects using Instrumental Time Series: Nuisance IV
  and Correcting for the Past
Identifying Causal Effects using Instrumental Time Series: Nuisance IV and Correcting for the Past
Nikolaj Thams
Rikke Sondergaard
S. Weichwald
J. Peters
AI4TSCML
72
13
0
11 Mar 2022
Exploiting Independent Instruments: Identification and Distribution
  Generalization
Exploiting Independent Instruments: Identification and Distribution Generalization
Sorawit Saengkyongam
Leonard Henckel
Niklas Pfister
J. Peters
88
18
0
03 Feb 2022
Invariant Policy Learning: A Causal Perspective
Invariant Policy Learning: A Causal Perspective
Sorawit Saengkyongam
Nikolaj Thams
J. Peters
Niklas Pfister
CMLOffRL
85
15
0
01 Jun 2021
Regularizing towards Causal Invariance: Linear Models with Proxies
Regularizing towards Causal Invariance: Linear Models with Proxies
Michael Oberst
Nikolaj Thams
J. Peters
David Sontag
OOD
78
25
0
03 Mar 2021
Regularizing Double Machine Learning in Partially Linear Endogenous
  Models
Regularizing Double Machine Learning in Partially Linear Endogenous Models
Corinne Emmenegger
Peter Buhlmann
38
10
0
29 Jan 2021
Statistical Inference for Maximin Effects: Identifying Stable
  Associations across Multiple Studies
Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies
Zijian Guo
56
17
0
15 Nov 2020
Deconfounding and Causal Regularization for Stability and External
  Validity
Deconfounding and Causal Regularization for Stability and External Validity
Peter Buhlmann
Domagoj Cevid
CML
49
11
0
14 Aug 2020
1