ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.04912
  4. Cited By
Maximizing Information Gain in Partially Observable Environments via
  Prediction Reward

Maximizing Information Gain in Partially Observable Environments via Prediction Reward

11 May 2020
Yash Satsangi
Sungsu Lim
Shimon Whiteson
F. Oliehoek
Martha White
ArXivPDFHTML

Papers citing "Maximizing Information Gain in Partially Observable Environments via Prediction Reward"

3 / 3 papers shown
Title
Active Acquisition for Multimodal Temporal Data: A Challenging
  Decision-Making Task
Active Acquisition for Multimodal Temporal Data: A Challenging Decision-Making Task
Jannik Kossen
Cătălina Cangea
Eszter Vértes
Andrew Jaegle
Viorica Patraucean
Ira Ktena
Nenad Tomašev
Danielle Belgrave
30
8
0
09 Nov 2022
Sensor Control for Information Gain in Dynamic, Sparse and Partially
  Observed Environments
Sensor Control for Information Gain in Dynamic, Sparse and Partially Observed Environments
J. Burns
A. Sundaresan
Pedro Sequeira
Vidyasagar Sadhu
11
0
0
03 Nov 2022
Rapid Exploration for Open-World Navigation with Latent Goal Models
Rapid Exploration for Open-World Navigation with Latent Goal Models
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
19
70
0
12 Apr 2021
1