Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.05238
Cited By
FedSplit: An algorithmic framework for fast federated optimization
11 May 2020
Reese Pathak
Martin J. Wainwright
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedSplit: An algorithmic framework for fast federated optimization"
18 / 118 papers shown
Title
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Delayed Projection Techniques for Linearly Constrained Problems: Convergence Rates, Acceleration, and Applications
Xiang Li
Zhihua Zhang
20
4
0
05 Jan 2021
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity
Amirhossein Reisizadeh
Isidoros Tziotis
Hamed Hassani
Aryan Mokhtari
Ramtin Pedarsani
FedML
162
98
0
28 Dec 2020
FedEval: A Holistic Evaluation Framework for Federated Learning
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
FedML
14
8
0
19 Nov 2020
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
14
57
0
17 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
17
108
0
03 Nov 2020
Fast Convergence Algorithm for Analog Federated Learning
Shuhao Xia
Jingyang Zhu
Yuhan Yang
Yong Zhou
Yuanming Shi
Wei-Neng Chen
FedML
22
31
0
30 Oct 2020
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric P. Xing
Afshin Rostamizadeh
FedML
6
109
0
11 Oct 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
22
186
0
05 Oct 2020
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Yae Jee Cho
Jianyu Wang
Gauri Joshi
FedML
25
399
0
03 Oct 2020
Robustness and Personalization in Federated Learning: A Unified Approach via Regularization
Achintya Kundu
Pengqian Yu
L. Wynter
Shiau Hong Lim
FedML
6
14
0
14 Sep 2020
Federated Generalized Bayesian Learning via Distributed Stein Variational Gradient Descent
Rahif Kassab
Osvaldo Simeone
FedML
10
45
0
11 Sep 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
14
1,295
0
15 Jul 2020
On the Outsized Importance of Learning Rates in Local Update Methods
Zachary B. Charles
Jakub Konecný
FedML
12
54
0
02 Jul 2020
Federated Learning Meets Multi-objective Optimization
Zeou Hu
K. Shaloudegi
Guojun Zhang
Yaoliang Yu
FedML
8
89
0
20 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
9
171
0
16 Jun 2020
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
116
259
0
10 Dec 2012
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
166
683
0
07 Dec 2010
Previous
1
2
3