ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.05238
  4. Cited By
FedSplit: An algorithmic framework for fast federated optimization

FedSplit: An algorithmic framework for fast federated optimization

11 May 2020
Reese Pathak
Martin J. Wainwright
    FedML
ArXivPDFHTML

Papers citing "FedSplit: An algorithmic framework for fast federated optimization"

18 / 118 papers shown
Title
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Delayed Projection Techniques for Linearly Constrained Problems:
  Convergence Rates, Acceleration, and Applications
Delayed Projection Techniques for Linearly Constrained Problems: Convergence Rates, Acceleration, and Applications
Xiang Li
Zhihua Zhang
20
4
0
05 Jan 2021
Straggler-Resilient Federated Learning: Leveraging the Interplay Between
  Statistical Accuracy and System Heterogeneity
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity
Amirhossein Reisizadeh
Isidoros Tziotis
Hamed Hassani
Aryan Mokhtari
Ramtin Pedarsani
FedML
162
98
0
28 Dec 2020
FedEval: A Holistic Evaluation Framework for Federated Learning
FedEval: A Holistic Evaluation Framework for Federated Learning
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
FedML
14
8
0
19 Nov 2020
Federated Composite Optimization
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
14
57
0
17 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
17
108
0
03 Nov 2020
Fast Convergence Algorithm for Analog Federated Learning
Fast Convergence Algorithm for Analog Federated Learning
Shuhao Xia
Jingyang Zhu
Yuhan Yang
Yong Zhou
Yuanming Shi
Wei-Neng Chen
FedML
22
31
0
30 Oct 2020
Federated Learning via Posterior Averaging: A New Perspective and
  Practical Algorithms
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric P. Xing
Afshin Rostamizadeh
FedML
6
109
0
11 Oct 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
22
186
0
05 Oct 2020
Client Selection in Federated Learning: Convergence Analysis and
  Power-of-Choice Selection Strategies
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Yae Jee Cho
Jianyu Wang
Gauri Joshi
FedML
25
399
0
03 Oct 2020
Robustness and Personalization in Federated Learning: A Unified Approach
  via Regularization
Robustness and Personalization in Federated Learning: A Unified Approach via Regularization
Achintya Kundu
Pengqian Yu
L. Wynter
Shiau Hong Lim
FedML
6
14
0
14 Sep 2020
Federated Generalized Bayesian Learning via Distributed Stein
  Variational Gradient Descent
Federated Generalized Bayesian Learning via Distributed Stein Variational Gradient Descent
Rahif Kassab
Osvaldo Simeone
FedML
10
45
0
11 Sep 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
14
1,295
0
15 Jul 2020
On the Outsized Importance of Learning Rates in Local Update Methods
On the Outsized Importance of Learning Rates in Local Update Methods
Zachary B. Charles
Jakub Konecný
FedML
12
54
0
02 Jul 2020
Federated Learning Meets Multi-objective Optimization
Federated Learning Meets Multi-objective Optimization
Zeou Hu
K. Shaloudegi
Guojun Zhang
Yaoliang Yu
FedML
8
89
0
20 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
9
171
0
16 Jun 2020
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
116
259
0
10 Dec 2012
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
166
683
0
07 Dec 2010
Previous
123