ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.06382
  4. Cited By
Super-Resolution Domain Adaptation Networks for Semantic Segmentation
  via Pixel and Output Level Aligning

Super-Resolution Domain Adaptation Networks for Semantic Segmentation via Pixel and Output Level Aligning

13 May 2020
Junfeng Wu
Zhenjie Tang
Congán Xu
Enhai Liu
Long Gao
Wenjun Yan
    OOD
ArXivPDFHTML

Papers citing "Super-Resolution Domain Adaptation Networks for Semantic Segmentation via Pixel and Output Level Aligning"

3 / 3 papers shown
Title
Fully Convolutional Adaptation Networks for Semantic Segmentation
Fully Convolutional Adaptation Networks for Semantic Segmentation
Yiheng Zhang
Zhaofan Qiu
Ting Yao
Dong Liu
Tao Mei
SSeg
OOD
158
349
0
23 Apr 2018
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
192
5,175
0
16 Sep 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,637
0
02 Nov 2015
1