ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.06897
  4. Cited By
Neural Networks Versus Conventional Filters for Inertial-Sensor-based
  Attitude Estimation

Neural Networks Versus Conventional Filters for Inertial-Sensor-based Attitude Estimation

14 May 2020
Daniel Weber
C. Gühmann
Thomas Seel
ArXivPDFHTML

Papers citing "Neural Networks Versus Conventional Filters for Inertial-Sensor-based Attitude Estimation"

4 / 4 papers shown
Title
Generalizable End-to-End Deep Learning Frameworks for Real-Time Attitude
  Estimation Using 6DoF Inertial Measurement Units
Generalizable End-to-End Deep Learning Frameworks for Real-Time Attitude Estimation Using 6DoF Inertial Measurement Units
Arman Asgharpoor Golroudbari
M. Sabour
16
13
0
13 Feb 2023
Adaptive Attitude Estimation Using a Hybrid Model-Learning Approach
Adaptive Attitude Estimation Using a Hybrid Model-Learning Approach
Eran Vertzberger
Itzik Klein
16
8
0
22 Jun 2022
Non-Autoregressive vs Autoregressive Neural Networks for System
  Identification
Non-Autoregressive vs Autoregressive Neural Networks for System Identification
Daniel Weber
C. Gühmann
19
7
0
05 May 2021
RIANN -- A Robust Neural Network Outperforms Attitude Estimation Filters
RIANN -- A Robust Neural Network Outperforms Attitude Estimation Filters
Daniel Weber
C. Gühmann
Thomas Seel
12
35
0
15 Apr 2021
1