Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.07404
Cited By
Think Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learning
15 May 2020
Thomas M. Moerland
Anna Deichler
S. Baldi
Joost Broekens
Catholijn M. Jonker
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Think Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learning"
7 / 7 papers shown
Title
Counting Hours, Counting Losses: The Toll of Unpredictable Work Schedules on Financial Security
Pegah Nokhiz
Aravinda Kanchana Ruwanpathirana
Aditya Bhaskara
Suresh Venkatasubramanian
87
1
0
10 Apr 2025
Multi-Bellman operator for convergence of
Q
Q
Q
-learning with linear function approximation
Diogo S. Carvalho
D. L. McPherson
Francisco S. Melo
60
1
0
28 Sep 2023
Planning and Learning with Adaptive Lookahead
Aviv A. Rosenberg
Assaf Hallak
Shie Mannor
Gal Chechik
Gal Dalal
83
8
0
28 Jan 2022
Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction
Assaf Hallak
Gal Dalal
Steven Dalton
I. Frosio
Shie Mannor
Gal Chechik
OffRL
OnRL
100
10
0
04 Jul 2021
CAMPs: Learning Context-Specific Abstractions for Efficient Planning in Factored MDPs
Rohan Chitnis
Tom Silver
Beomjoon Kim
L. Kaelbling
Tomas Lozano-Perez
73
27
0
26 Jul 2020
Model-based Reinforcement Learning: A Survey
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
123
49
0
30 Jun 2020
A Unifying Framework for Reinforcement Learning and Planning
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
131
9
0
26 Jun 2020
1