ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.08501
  4. Cited By
VecQ: Minimal Loss DNN Model Compression With Vectorized Weight
  Quantization

VecQ: Minimal Loss DNN Model Compression With Vectorized Weight Quantization

18 May 2020
Cheng Gong
Yao Chen
Ye Lu
Tao Li
Cong Hao
Deming Chen
    MQ
ArXivPDFHTML

Papers citing "VecQ: Minimal Loss DNN Model Compression With Vectorized Weight Quantization"

6 / 6 papers shown
Title
Hybrid-Parallel: Achieving High Performance and Energy Efficient
  Distributed Inference on Robots
Hybrid-Parallel: Achieving High Performance and Energy Efficient Distributed Inference on Robots
Zekai Sun
Xiuxian Guan
Junming Wang
Haoze Song
Yuhao Qing
Tianxiang Shen
Dong Huang
Fangming Liu
Heming Cui
34
0
0
29 May 2024
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural
  Networks
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural Networks
Cheng Gong
Ye Lu
Surong Dai
Deng Qian
Chenkun Du
Tao Li
MQ
27
0
0
07 Apr 2023
Elastic Significant Bit Quantization and Acceleration for Deep Neural
  Networks
Elastic Significant Bit Quantization and Acceleration for Deep Neural Networks
Cheng Gong
Ye Lu
Kunpeng Xie
Zongming Jin
Tao Li
Yanzhi Wang
MQ
25
7
0
08 Sep 2021
3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization,
  and Ultra-Low Latency Acceleration
3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization, and Ultra-Low Latency Acceleration
Yao Chen
Cole Hawkins
Kaiqi Zhang
Zheng-Wei Zhang
Cong Hao
18
8
0
11 May 2021
Enabling Design Methodologies and Future Trends for Edge AI:
  Specialization and Co-design
Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Co-design
Cong Hao
Jordan Dotzel
Jinjun Xiong
Luca Benini
Zhiru Zhang
Deming Chen
50
34
0
25 Mar 2021
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
319
1,049
0
10 Feb 2017
1