Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.08898
Cited By
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
18 May 2020
Tian Tong
Cong Ma
Yuejie Chi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent"
22 / 22 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
40
34
0
13 Apr 2025
Matrix Completion with Graph Information: A Provable Nonconvex Optimization Approach
Yao Wang
Yiyang Yang
Kaidong Wang
Shanxing Gao
Xiuwu Liao
60
0
0
12 Feb 2025
Learnable Scaled Gradient Descent for Guaranteed Robust Tensor PCA
Lanlan Feng
Ce Zhu
Yipeng Liu
Saiprasad Ravishankar
Longxiu Huang
37
0
0
20 Jan 2025
Structured Sampling for Robust Euclidean Distance Geometry
Chandra Kundu
Abiy Tasissa
HanQin Cai
89
0
0
14 Dec 2024
Collaborative and Efficient Personalization with Mixtures of Adaptors
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
42
2
0
04 Oct 2024
OATS: Outlier-Aware Pruning Through Sparse and Low Rank Decomposition
Stephen Zhang
V. Papyan
VLM
43
1
0
20 Sep 2024
Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization
Hao Wang
Ye Wang
Xiangyu Yang
26
0
0
22 Jun 2024
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
Zhen Qin
Zhihui Zhu
57
4
0
10 Jun 2024
On the Robustness of Cross-Concentrated Sampling for Matrix Completion
HanQin Cai
Longxiu Huang
Chandra Kundu
Bowen Su
32
4
0
28 Jan 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
16
9
0
09 Oct 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
38
4
0
10 Mar 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
36
34
0
27 Jan 2023
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
17
6
0
29 Sep 2022
Optimal tuning-free convex relaxation for noisy matrix completion
Yuepeng Yang
Cong Ma
24
8
0
12 Jul 2022
Supervised Dictionary Learning with Auxiliary Covariates
Joo-Hyun Lee
Hanbaek Lyu
W. Yao
16
1
0
14 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
40
23
0
07 Jun 2022
Learned Robust PCA: A Scalable Deep Unfolding Approach for High-Dimensional Outlier Detection
HanQin Cai
Jialin Liu
W. Yin
25
39
0
11 Oct 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
23
9
0
03 Aug 2021
GNMR: A provable one-line algorithm for low rank matrix recovery
Pini Zilber
B. Nadler
40
13
0
24 Jun 2021
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
19
15
0
17 Nov 2020
Escaping Saddle Points in Ill-Conditioned Matrix Completion with a Scalable Second Order Method
C. Kümmerle
C. M. Verdun
11
6
0
07 Sep 2020
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Laixi Shi
Yuejie Chi
16
26
0
25 Nov 2019
1