ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09669
  4. Cited By
Exponential ergodicity of mirror-Langevin diffusions
v1v2 (latest)

Exponential ergodicity of mirror-Langevin diffusions

19 May 2020
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
Austin J. Stromme
ArXiv (abs)PDFHTML

Papers citing "Exponential ergodicity of mirror-Langevin diffusions"

14 / 14 papers shown
Title
Accelerating Constrained Sampling: A Large Deviations Approach
Accelerating Constrained Sampling: A Large Deviations Approach
Yingli Wang
Changwei Tu
Xiaoyu Wang
Lingjiong Zhu
13
0
0
09 Jun 2025
New affine invariant ensemble samplers and their dimensional scaling
New affine invariant ensemble samplers and their dimensional scaling
Yifan Chen
103
0
0
05 May 2025
Learning Rate Free Sampling in Constrained Domains
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
78
2
0
24 May 2023
Variational Principles for Mirror Descent and Mirror Langevin Dynamics
Variational Principles for Mirror Descent and Mirror Langevin Dynamics
Belinda Tzen
Anant Raj
Maxim Raginsky
Francis R. Bach
38
9
0
16 Mar 2023
From Optimization to Sampling Through Gradient Flows
From Optimization to Sampling Through Gradient Flows
Nicolas García Trillos
B. Hosseini
D. Sanz-Alonso
52
11
0
22 Feb 2023
Transport map unadjusted Langevin algorithms: learning and discretizing
  perturbed samplers
Transport map unadjusted Langevin algorithms: learning and discretizing perturbed samplers
Benjamin J. Zhang
Youssef M. Marzouk
K. Spiliopoulos
72
0
0
14 Feb 2023
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Tim Tsz-Kit Lau
Han Liu
122
7
0
10 Jul 2022
Convergence of Stein Variational Gradient Descent under a Weaker
  Smoothness Condition
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
76
19
0
01 Jun 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
84
40
0
03 Feb 2022
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
119
19
0
23 Jun 2021
The query complexity of sampling from strongly log-concave distributions
  in one dimension
The query complexity of sampling from strongly log-concave distributions in one dimension
Sinho Chewi
P. Gerber
Chen Lu
Thibaut Le Gouic
Philippe Rigollet
87
21
0
29 May 2021
Efficient constrained sampling via the mirror-Langevin algorithm
Efficient constrained sampling via the mirror-Langevin algorithm
Kwangjun Ahn
Sinho Chewi
106
57
0
30 Oct 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
100
70
0
03 Jun 2020
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry
  Suffices
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
119
269
0
20 Mar 2019
1