Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.12564
Cited By
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
26 May 2020
Siddhartha Mishra
T. Konstantin Rusch
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences"
22 / 22 papers shown
Title
Using Low-Discrepancy Points for Data Compression in Machine Learning: An Experimental Comparison
Simone Göttlich
Jacob Heieck
Andreas Neuenkirch
19
0
0
10 Jul 2024
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
T. Konstantin Rusch
Nathan Kirk
M. Bronstein
Christiane Lemieux
Daniela Rus
24
6
0
23 May 2024
A practical existence theorem for reduced order models based on convolutional autoencoders
N. R. Franco
Simone Brugiapaglia
AI4CE
29
4
0
01 Feb 2024
Toward High-Performance Energy and Power Battery Cells with Machine Learning-based Optimization of Electrode Manufacturing
M. Duquesnoy
C. Liu
Vishank Kumar
E. Ayerbe
A. Franco
13
2
0
07 Jul 2023
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
13
1
0
22 Mar 2023
On the Generalization of PINNs outside the training domain and the Hyperparameters influencing it
Andrea Bonfanti
Roberto Santana
M. Ellero
Babak Gholami
AI4CE
PINN
35
3
0
15 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio'
Michael M. Bronstein
35
112
0
06 Feb 2023
Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations
Fengjiang Fu
Xiaoqun Wang
21
2
0
28 Oct 2022
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
Roberto Molinaro
PINN
27
28
0
18 Jul 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
25
115
0
17 Mar 2022
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
22
19
0
04 Oct 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
21
137
0
18 Apr 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
18
45
0
10 Mar 2021
Physics-aware deep neural networks for surrogate modeling of turbulent natural convection
Didier Lucor
A. Agrawal
A. Sergent
PINN
AI4CE
15
16
0
05 Mar 2021
Consequences of Slow Neural Dynamics for Incremental Learning
Shima Rahimi Moghaddam
Fanjun Bu
C. Honey
OOD
AI4CE
18
0
0
12 Dec 2020
Physics Informed Neural Networks for Simulating Radiative Transfer
Siddhartha Mishra
Roberto Molinaro
PINN
11
102
0
25 Sep 2020
Higher-order Quasi-Monte Carlo Training of Deep Neural Networks
M. Longo
Suman Mishra
T. Konstantin Rusch
Christoph Schwab
25
20
0
06 Sep 2020
Iterative Surrogate Model Optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
K. Lye
Siddhartha Mishra
Deep Ray
P. Chandrasekhar
11
74
0
13 Aug 2020
Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions
Philipp Grohs
L. Herrmann
14
51
0
10 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
11
261
0
29 Jun 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
15
170
0
29 Jun 2020
A Multi-level procedure for enhancing accuracy of machine learning algorithms
K. Lye
Siddhartha Mishra
Roberto Molinaro
13
31
0
20 Sep 2019
1