ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14105
  4. Cited By
Provably Good Solutions to the Knapsack Problem via Neural Networks of
  Bounded Size
v1v2v3 (latest)

Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size

28 May 2020
Christoph Hertrich
M. Skutella
ArXiv (abs)PDFHTML

Papers citing "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size"

9 / 9 papers shown
Title
Neural Networks and (Virtual) Extended Formulations
Neural Networks and (Virtual) Extended Formulations
Christoph Hertrich
Georg Loho
196
3
0
05 Nov 2024
All You Need is an Improving Column: Enhancing Column Generation for
  Parallel Machine Scheduling via Transformers
All You Need is an Improving Column: Enhancing Column Generation for Parallel Machine Scheduling via Transformers
Amira Hijazi
Osman Ozaltin
Reha Uzsoy
94
0
0
21 Oct 2024
Positional Attention: Expressivity and Learnability of Algorithmic Computation
Positional Attention: Expressivity and Learnability of Algorithmic Computation
George Giapitzakis
Artur Back de Luca
Shenghao Yang
Petar Veličković
Kimon Fountoulakis
216
3
0
02 Oct 2024
Unsupervised Extractive Summarization with Learnable Length Control
  Strategies
Unsupervised Extractive Summarization with Learnable Length Control Strategies
Renlong Jie
Xiaojun Meng
Xin Jiang
Qun Liu
121
4
0
12 Dec 2023
Approximating Solutions to the Knapsack Problem using the Lagrangian
  Dual Framework
Approximating Solutions to the Knapsack Problem using the Lagrangian Dual Framework
Mitchell Keegan
Mahdi Abolghasemi
116
1
0
06 Dec 2023
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
  of Policy-Gradient Methods
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods
Constantine Caramanis
Dimitris Fotakis
Alkis Kalavasis
Vasilis Kontonis
Christos Tzamos
126
5
0
08 Oct 2023
Training Fully Connected Neural Networks is $\exists\mathbb{R}$-Complete
Training Fully Connected Neural Networks is ∃R\exists\mathbb{R}∃R-Complete
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
207
32
0
04 Apr 2022
Towards Lower Bounds on the Depth of ReLU Neural Networks
Towards Lower Bounds on the Depth of ReLU Neural Networks
Christoph Hertrich
A. Basu
M. D. Summa
M. Skutella
214
48
0
31 May 2021
ReLU Neural Networks of Polynomial Size for Exact Maximum Flow
  Computation
ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation
Christoph Hertrich
Leon Sering
142
10
0
12 Feb 2021
1