Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.14139
Cited By
Machine learning and excited-state molecular dynamics
28 May 2020
Julia Westermayr
P. Marquetand
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine learning and excited-state molecular dynamics"
5 / 5 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
113
9
0
12 Mar 2025
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
83
65
0
11 Dec 2022
Deep Learning for UV Absorption Spectra with SchNarc: First Steps Towards Transferability in Chemical Compound Space
Julia Westermayr
P. Marquetand
83
53
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
71
266
0
10 Jul 2020
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
73
99
0
26 Mar 2020
1