ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14617
  4. Cited By
Modeling System Dynamics with Physics-Informed Neural Networks Based on
  Lagrangian Mechanics

Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics

29 May 2020
Manuel A. Roehrl
Thomas Runkler
Veronika Brandtstetter
Michel Tokic
Stefan Obermayer
    PINN
ArXivPDFHTML

Papers citing "Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics"

19 / 19 papers shown
Title
Learned Perceptive Forward Dynamics Model for Safe and Platform-aware Robotic Navigation
Learned Perceptive Forward Dynamics Model for Safe and Platform-aware Robotic Navigation
Pascal Roth
Jonas Frey
César Cadena
Marco Hutter
36
0
0
27 Apr 2025
Bayesian identification of nonseparable Hamiltonians with multiplicative
  noise using deep learning and reduced-order modeling
Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
Nicholas Galioto
Harsh Sharma
Boris Kramer
Alex Arkady Gorodetsky
38
0
0
23 Jan 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics
  Learning and Control
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
28
10
0
17 Jan 2024
Time-vectorized numerical integration for systems of ODEs
Time-vectorized numerical integration for systems of ODEs
Mark C. Messner
Tianchen Hu
Tianju Chen
AI4TS
26
1
0
12 Oct 2023
Hamiltonian GAN
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
29
1
0
22 Aug 2023
Compositional Learning of Dynamical System Models Using Port-Hamiltonian
  Neural Networks
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
11
12
0
01 Dec 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
  Scientific Computing
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
48
0
14 Nov 2022
Unravelling the Performance of Physics-informed Graph Neural Networks
  for Dynamical Systems
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
32
22
0
10 Nov 2022
Learning Articulated Rigid Body Dynamics with Lagrangian Graph Neural
  Network
Learning Articulated Rigid Body Dynamics with Lagrangian Graph Neural Network
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
28
17
0
23 Sep 2022
Learning the Dynamics of Particle-based Systems with Lagrangian Graph
  Neural Networks
Learning the Dynamics of Particle-based Systems with Lagrangian Graph Neural Networks
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
31
20
0
03 Sep 2022
Thermodynamics of learning physical phenomena
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Neural modal ordinary differential equations: Integrating physics-based
  modeling with neural ordinary differential equations for modeling
  high-dimensional monitored structures
Neural modal ordinary differential equations: Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored structures
Zhilu Lai
Wei Liu
Xudong Jian
Kiran Bacsa
Limin Sun
Eleni Chatzi
AI4CE
23
22
0
16 Jul 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Lagrangian Neural Network with Differentiable Symmetries and Relational
  Inductive Bias
Lagrangian Neural Network with Differentiable Symmetries and Relational Inductive Bias
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
47
4
0
07 Oct 2021
Implicit energy regularization of neural ordinary-differential-equation
  control
Implicit energy regularization of neural ordinary-differential-equation control
Lucas Böttcher
Nino Antulov-Fantulin
Thomas Asikis
21
67
0
11 Mar 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable
  Generative Modeling
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
24
54
0
25 Feb 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable
  Contact Models
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
34
0
12 Feb 2021
A Physics-Informed Deep Learning Paradigm for Car-Following Models
A Physics-Informed Deep Learning Paradigm for Car-Following Models
Zhaobin Mo
Xuan Di
Rongye Shi
PINN
AI4CE
22
131
0
24 Dec 2020
1