Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
2006.00442
Cited By
v1
v2 (latest)
Evaluations and Methods for Explanation through Robustness Analysis
International Conference on Learning Representations (ICLR), 2019
31 May 2020
Cheng-Yu Hsieh
Chih-Kuan Yeh
Xuanqing Liu
Pradeep Ravikumar
Seungyeon Kim
Sanjiv Kumar
Cho-Jui Hsieh
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Evaluations and Methods for Explanation through Robustness Analysis"
48 / 48 papers shown
Title
Learning Conformal Explainers for Image Classifiers
Amr Alkhatib
Stephanie Lowry
FAtt
176
0
0
25 Sep 2025
On the Fragility of Contribution Score Computation in Federated Learning
Balazs Pejo
Marcell Frank
Krisztian Varga
Peter Veliczky
G. Biczók
FedML
135
0
0
24 Sep 2025
Explainable Mapper: Charting LLM Embedding Spaces Using Perturbation-Based Explanation and Verification Agents
Xinyuan Yan
Rita Sevastjanova
Sinie van der Ben
Mennatallah El-Assady
Bei Wang
143
1
0
24 Jul 2025
Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models
Thomas Fel
Ekdeep Singh Lubana
Jacob S. Prince
M. Kowal
Victor Boutin
Isabel Papadimitriou
Binxu Wang
Martin Wattenberg
Demba Ba
Talia Konkle
203
23
0
18 Feb 2025
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
268
22
0
06 Feb 2025
Faithfulness and the Notion of Adversarial Sensitivity in NLP Explanations
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP (BlackBoxNLP), 2024
Supriya Manna
Niladri Sett
AAML
268
3
0
26 Sep 2024
Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation
European Conference on Artificial Intelligence (ECAI), 2024
Guy Amir
Shahaf Bassan
Guy Katz
182
7
0
07 Aug 2024
Explainable Image Recognition via Enhanced Slot-attention Based Classifier
Bowen Wang
Liangzhi Li
Jiahao Zhang
Yuta Nakashima
Hajime Nagahara
OCL
308
1
0
08 Jul 2024
Large Language Models are Interpretable Learners
Ruochen Wang
Si Si
Felix X. Yu
Dorothea Wiesmann
Cho-Jui Hsieh
Inderjit Dhillon
265
6
0
25 Jun 2024
Inpainting the Gaps: A Novel Framework for Evaluating Explanation Methods in Vision Transformers
Lokesh Badisa
Sumohana S. Channappayya
238
1
0
17 Jun 2024
A Sim2Real Approach for Identifying Task-Relevant Properties in Interpretable Machine Learning
Eura Nofshin
Esther Brown
Brian Lim
Weiwei Pan
Finale Doshi-Velez
232
1
0
31 May 2024
Challenges and Opportunities in Text Generation Explainability
Kenza Amara
Rita Sevastjanova
Mennatallah El-Assady
SILM
155
3
0
14 May 2024
DAM: Diffusion Activation Maximization for 3D Global Explanations
Hanxiao Tan
180
2
0
26 Jan 2024
Explaining Time Series via Contrastive and Locally Sparse Perturbations
International Conference on Learning Representations (ICLR), 2024
Zichuan Liu
Yingying Zhang
Tianchun Wang
Zefan Wang
Dongsheng Luo
...
Min Wu
Yi Wang
Chunlin Chen
Lunting Fan
Qingsong Wen
306
19
0
16 Jan 2024
Towards Faithful Explanations for Text Classification with Robustness Improvement and Explanation Guided Training
Dongfang Li
Baotian Hu
Qingcai Chen
Shan He
231
7
0
29 Dec 2023
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
Neural Information Processing Systems (NeurIPS), 2023
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
252
7
0
01 Nov 2023
The Blame Problem in Evaluating Local Explanations, and How to Tackle it
Amir Hossein Akhavan Rahnama
ELM
FAtt
217
6
0
05 Oct 2023
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
International Conference on Learning Representations (ICLR), 2023
Xu Zheng
Farhad Shirani
Tianchun Wang
Wei Cheng
Zhuomin Chen
Haifeng Chen
Hua Wei
Dongsheng Luo
216
15
0
03 Oct 2023
GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Network Explanations
Kenza Amara
Mennatallah El-Assady
Rex Ying
144
6
0
28 Sep 2023
Good-looking but Lacking Faithfulness: Understanding Local Explanation Methods through Trend-based Testing
Conference on Computer and Communications Security (CCS), 2023
Jinwen He
Kai Chen
Guozhu Meng
Jiangshan Zhang
Congyi Li
FAtt
AAML
203
3
0
09 Sep 2023
A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation
Neural Information Processing Systems (NeurIPS), 2023
Thomas Fel
Victor Boutin
Mazda Moayeri
Rémi Cadène
Louis Bethune
Léo Andéol
Mathieu Chalvidal
Thomas Serre
FAtt
263
79
0
11 Jun 2023
Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency
Neural Information Processing Systems (NeurIPS), 2023
Owen Queen
Thomas Hartvigsen
Teddy Koker
Huan He
Theodoros Tsiligkaridis
Marinka Zitnik
AI4TS
250
32
0
03 Jun 2023
Faithfulness Tests for Natural Language Explanations
Annual Meeting of the Association for Computational Linguistics (ACL), 2023
Pepa Atanasova
Oana-Maria Camburu
Christina Lioma
Thomas Lukasiewicz
J. Simonsen
Isabelle Augenstein
FAtt
301
83
0
29 May 2023
Human Attention-Guided Explainable Artificial Intelligence for Computer Vision Models
Neural Networks (Neural Netw.), 2023
Guoyang Liu
Jindi Zhang
Antoni B. Chan
J. H. Hsiao
201
32
0
05 May 2023
Interpreting Robustness Proofs of Deep Neural Networks
International Conference on Learning Representations (ICLR), 2023
Debangshu Banerjee
Avaljot Singh
Gagandeep Singh
AAML
125
6
0
31 Jan 2023
CRAFT: Concept Recursive Activation FacTorization for Explainability
Computer Vision and Pattern Recognition (CVPR), 2022
Thomas Fel
Agustin Picard
Louis Bethune
Thibaut Boissin
David Vigouroux
Julien Colin
Rémi Cadène
Thomas Serre
258
159
0
17 Nov 2022
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
329
23
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
190
8
0
09 Nov 2022
Boundary-Aware Uncertainty for Feature Attribution Explainers
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Davin Hill
A. Masoomi
Max Torop
S. Ghimire
Jennifer Dy
FAtt
370
7
0
05 Oct 2022
Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition through the Lens of Robustness
Ya-Hsin Cheng
Lihao Liu
Shujun Wang
Yueming Jin
Carola-Bibiane Schönlieb
Angelica I. Aviles-Rivero
134
7
0
18 Sep 2022
Concept Gradient: Concept-based Interpretation Without Linear Assumption
International Conference on Learning Representations (ICLR), 2022
Andrew Bai
Chih-Kuan Yeh
Pradeep Ravikumar
Neil Y. C. Lin
Cho-Jui Hsieh
117
22
0
31 Aug 2022
Connecting Algorithmic Research and Usage Contexts: A Perspective of Contextualized Evaluation for Explainable AI
AAAI Conference on Human Computation & Crowdsourcing (HCOMP), 2022
Q. V. Liao
Yunfeng Zhang
Ronny Luss
Finale Doshi-Velez
Amit Dhurandhar
212
91
0
22 Jun 2022
On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective
Neural Information Processing Systems (NeurIPS), 2022
M. Serrurier
Franck Mamalet
Thomas Fel
Louis Bethune
Thibaut Boissin
AAML
FAtt
315
8
0
14 Jun 2022
Xplique: A Deep Learning Explainability Toolbox
Thomas Fel
Lucas Hervier
David Vigouroux
Antonin Poché
Justin Plakoo
...
Agustin Picard
C. Nicodeme
Laurent Gardes
G. Flandin
Thomas Serre
168
40
0
09 Jun 2022
Deletion and Insertion Tests in Regression Models
Journal of machine learning research (JMLR), 2022
Naofumi Hama
Masayoshi Mase
Art B. Owen
270
12
0
25 May 2022
Evaluating Local Model-Agnostic Explanations of Learning to Rank Models with Decision Paths
Amir Hossein Akhavan Rahnama
Judith Butepage
XAI
FAtt
109
0
0
04 Mar 2022
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
195
30
0
25 Feb 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Computer Vision and Pattern Recognition (CVPR), 2022
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
199
46
0
15 Feb 2022
What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods
Neural Information Processing Systems (NeurIPS), 2021
Julien Colin
Thomas Fel
Rémi Cadène
Thomas Serre
284
118
0
06 Dec 2021
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
124
44
0
24 Jun 2021
Leveraging Conditional Generative Models in a General Explanation Framework of Classifier Decisions
Future generations computer systems (FGCS), 2021
Martin Charachon
P. Cournède
C´eline Hudelot
R. Ardon
77
6
0
21 Jun 2021
Evaluating Local Explanations using White-box Models
Amir Hossein Akhavan Rahnama
Judith Butepage
Pierre Geurts
Henrik Bostrom
FAtt
187
0
0
04 Jun 2021
The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations
Neural Information Processing Systems (NeurIPS), 2021
Peter Hase
Harry Xie
Joey Tianyi Zhou
OODD
LRM
FAtt
281
100
0
01 Jun 2021
Where and When: Space-Time Attention for Audio-Visual Explanations
Yanbei Chen
Thomas Hummel
A. Sophia Koepke
Zeynep Akata
111
4
0
04 May 2021
On the Sensitivity and Stability of Model Interpretations in NLP
Annual Meeting of the Association for Computational Linguistics (ACL), 2021
Fan Yin
Zhouxing Shi
Cho-Jui Hsieh
Kai-Wei Chang
FAtt
183
33
0
18 Apr 2021
Combining Similarity and Adversarial Learning to Generate Visual Explanation: Application to Medical Image Classification
International Conference on Pattern Recognition (ICPR), 2020
Martin Charachon
C´eline Hudelot
P. Cournède
Camille Ruppli
R. Ardon
AAML
GAN
FAtt
MedIm
111
7
0
14 Dec 2020
Explaining with Counter Visual Attributes and Examples
International Conference on Multimedia Retrieval (ICMR), 2020
Sadaf Gulshad
A. Smeulders
XAI
FAtt
AAML
119
15
0
27 Jan 2020
Understanding Misclassifications by Attributes
Sadaf Gulshad
Zeynep Akata
J. H. Metzen
A. Smeulders
AAML
145
0
0
15 Oct 2019
1