Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2006.00475
Cited By
v1
v2
v3 (latest)
Improved Regret for Zeroth-Order Adversarial Bandit Convex Optimisation
31 May 2020
Tor Lattimore
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improved Regret for Zeroth-Order Adversarial Bandit Convex Optimisation"
29 / 29 papers shown
Non-stationary Bandit Convex Optimization: A Comprehensive Study
Xiaoqi Liu
Dorian Baudry
Julian Zimmert
Patrick Rebeschini
Arya Akhavan
208
3
0
03 Jun 2025
Adversarial bandit optimization for approximately linear functions
IFIP Working Conference on Database Semantics (IWDS), 2025
Zhuoyu Cheng
Kohei Hatano
Eiji Takimoto
346
0
0
27 May 2025
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
Jingxin Zhan
Yuchen Xin
Kaicheng Jin
Zhihua Zhang
275
0
0
19 Jan 2025
Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability
Neural Information Processing Systems (NeurIPS), 2024
Fan Chen
Dylan J. Foster
Yanjun Han
Jian Qian
Alexander Rakhlin
Yunbei Xu
260
3
0
07 Oct 2024
CONGO: Compressive Online Gradient Optimization
Jeremy Carleton
Prathik Vijaykumar
Divyanshu Saxena
Dheeraj Narasimha
Srinivas Shakkottai
Aditya Akella
371
0
0
08 Jul 2024
A simple and improved algorithm for noisy, convex, zeroth-order optimisation
Alexandra Carpentier
178
0
0
26 Jun 2024
Online Newton Method for Bandit Convex Optimisation
Hidde Fokkema
Dirk van der Hoeven
Tor Lattimore
Jack J. Mayo
164
8
0
10 Jun 2024
Improved Regret for Bandit Convex Optimization with Delayed Feedback
Yuanyu Wan
Chang Yao
Weilong Dai
Lijun Zhang
292
8
0
14 Feb 2024
Bayesian Design Principles for Frequentist Sequential Learning
International Conference on Machine Learning (ICML), 2023
Yunbei Xu
A. Zeevi
514
16
0
01 Oct 2023
Infinite Action Contextual Bandits with Reusable Data Exhaust
International Conference on Machine Learning (ICML), 2023
Mark Rucker
Yinglun Zhu
Paul Mineiro
OffRL
307
2
0
16 Feb 2023
Statistical Complexity and Optimal Algorithms for Non-linear Ridge Bandits
Annals of Statistics (Ann. Stat.), 2023
Nived Rajaraman
Yanjun Han
Jiantao Jiao
Kannan Ramchandran
433
3
0
12 Feb 2023
A Second-Order Method for Stochastic Bandit Convex Optimisation
Annual Conference Computational Learning Theory (COLT), 2023
Tor Lattimore
András Gyorgy
155
8
0
10 Feb 2023
An Information-Theoretic Analysis of Nonstationary Bandit Learning
International Conference on Machine Learning (ICML), 2023
Seungki Min
Daniel Russo
259
9
0
09 Feb 2023
Bandit Convex Optimisation Revisited: FTRL Achieves
O
~
(
t
1
/
2
)
\tilde{O}(t^{1/2})
O
~
(
t
1/2
)
Regret
David Young
D. Leith
Georgios Iosifidis
222
0
0
01 Feb 2023
Tight Guarantees for Interactive Decision Making with the Decision-Estimation Coefficient
Annual Conference Computational Learning Theory (COLT), 2023
Dylan J. Foster
Noah Golowich
Yanjun Han
OffRL
222
29
0
19 Jan 2023
On Adaptivity in Non-stationary Stochastic Optimization With Bandit Feedback
Yining Wang
154
6
0
11 Oct 2022
Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits
Neural Information Processing Systems (NeurIPS), 2022
Tongyang Li
Ruizhe Zhang
143
15
0
26 Sep 2022
A Near-Optimal Algorithm for Univariate Zeroth-Order Budget Convex Optimization
François Bachoc
Tommaso Cesari
Roberto Colomboni
Andrea Paudice
196
2
0
13 Aug 2022
Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces
International Conference on Machine Learning (ICML), 2022
Yinglun Zhu
Paul Mineiro
208
18
0
12 Jul 2022
On the Complexity of Adversarial Decision Making
Neural Information Processing Systems (NeurIPS), 2022
Dylan J. Foster
Alexander Rakhlin
Ayush Sekhari
Karthik Sridharan
AAML
189
31
0
27 Jun 2022
Adaptive Bandit Convex Optimization with Heterogeneous Curvature
Annual Conference Computational Learning Theory (COLT), 2022
Haipeng Luo
Mengxiao Zhang
Penghui Zhao
200
5
0
12 Feb 2022
Optimal Gradient-based Algorithms for Non-concave Bandit Optimization
Neural Information Processing Systems (NeurIPS), 2021
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
515
19
0
09 Jul 2021
Minimax Regret for Bandit Convex Optimisation of Ridge Functions
Tor Lattimore
150
3
0
01 Jun 2021
No Weighted-Regret Learning in Adversarial Bandits with Delays
Journal of machine learning research (JMLR), 2021
Ilai Bistritz
Zhengyuan Zhou
Xi Chen
Nicholas Bambos
Jose H. Blanchet
280
11
0
08 Mar 2021
A Bit Better? Quantifying Information for Bandit Learning
Adithya M. Devraj
Benjamin Van Roy
Kuang Xu
109
5
0
18 Feb 2021
How to Learn when Data Reacts to Your Model: Performative Gradient Descent
International Conference on Machine Learning (ICML), 2021
Zachary Izzo
Lexing Ying
James Zou
307
88
0
15 Feb 2021
Mirror Descent and the Information Ratio
Annual Conference Computational Learning Theory (COLT), 2020
Tor Lattimore
András Gyorgy
215
45
0
25 Sep 2020
Quantum Algorithm for Online Convex Optimization
Quantum Science and Technology (QST), 2020
Jianhao He
Feidiao Yang
Jialin Zhang
Lvzhou Li
431
7
0
29 Jul 2020
Bandit Convex Optimization in Non-stationary Environments
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Peng Zhao
G. Wang
Lijun Zhang
Zhi Zhou
194
54
0
29 Jul 2019
1