Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.01095
Cited By
Emergence of Separable Manifolds in Deep Language Representations
1 June 2020
Jonathan Mamou
Hang Le
Miguel Angel del Rio
Cory Stephenson
Hanlin Tang
Yoon Kim
SueYeon Chung
AAML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Emergence of Separable Manifolds in Deep Language Representations"
10 / 10 papers shown
Title
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Jin Hwa Lee
Thomas Jiralerspong
Lei Yu
Yoshua Bengio
Emily Cheng
CoGe
82
0
0
02 Oct 2024
Large language models implicitly learn to straighten neural sentence trajectories to construct a predictive representation of natural language
Eghbal A. Hosseini
Evelina Fedorenko
LLMSV
20
4
0
05 Nov 2023
Bridging Information-Theoretic and Geometric Compression in Language Models
Emily Cheng
Corentin Kervadec
Marco Baroni
24
16
0
20 Oct 2023
Deep neural networks architectures from the perspective of manifold learning
German Magai
AAML
AI4CE
16
6
0
06 Jun 2023
Privacy-Preserving Prompt Tuning for Large Language Model Services
Yansong Li
Zhixing Tan
Yang Liu
SILM
VLM
45
63
0
10 May 2023
The geometry of hidden representations of large transformer models
L. Valeriani
Diego Doimo
F. Cuturello
A. Laio
A. Ansuini
Alberto Cazzaniga
MILM
21
48
0
01 Feb 2023
Deep Learning Models to Study Sentence Comprehension in the Human Brain
S. Arana
Jacques Pesnot Lerousseau
P. Hagoort
21
10
0
16 Jan 2023
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
Hong Liu
Sang Michael Xie
Zhiyuan Li
Tengyu Ma
AI4CE
32
49
0
25 Oct 2022
Discovering Latent Concepts Learned in BERT
Fahim Dalvi
A. Khan
Firoj Alam
Nadir Durrani
Jia Xu
Hassan Sajjad
SSL
11
56
0
15 May 2022
The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives
Elena Voita
Rico Sennrich
Ivan Titov
190
181
0
03 Sep 2019
1