ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.01541
  4. Cited By
Committee neural network potentials control generalization errors and
  enable active learning
v1v2 (latest)

Committee neural network potentials control generalization errors and enable active learning

2 June 2020
Christoph Schran
K. Brezina
O. Marsalek
ArXiv (abs)PDFHTML

Papers citing "Committee neural network potentials control generalization errors and enable active learning"

7 / 7 papers shown
Title
Uncertainty-biased molecular dynamics for learning uniformly accurate
  interatomic potentials
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
84
19
0
03 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case
  Study of Liquid Water
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
68
18
0
03 Dec 2023
Graph Neural Network Interatomic Potential Ensembles with Calibrated
  Aleatoric and Epistemic Uncertainty on Energy and Forces
Graph Neural Network Interatomic Potential Ensembles with Calibrated Aleatoric and Epistemic Uncertainty on Energy and Forces
Jonas Busk
Mikkel N. Schmidt
Ole Winther
Tejs Vegge
Peter Bjørn Jørgensen
56
9
0
10 May 2023
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
66
49
0
17 Nov 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
108
76
0
09 Oct 2022
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
98
63
0
27 Jan 2021
Uncertainty estimation for molecular dynamics and sampling
Uncertainty estimation for molecular dynamics and sampling
G. Imbalzano
Yongbin Zhuang
V. Kapil
K. Rossi
Edgar A. Engel
Federico Grasselli
Michele Ceriotti
50
5
0
10 Nov 2020
1