ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.02230
  4. Cited By
PolyDL: Polyhedral Optimizations for Creation of High Performance DL
  primitives
v1v2 (latest)

PolyDL: Polyhedral Optimizations for Creation of High Performance DL primitives

2 June 2020
Sanket Tavarageri
A. Heinecke
Sasikanth Avancha
Gagandeep Goyal
Ramakrishna Upadrasta
Bharat Kaul
ArXiv (abs)PDFHTML

Papers citing "PolyDL: Polyhedral Optimizations for Creation of High Performance DL primitives"

2 / 2 papers shown
Title
oneDNN Graph Compiler: A Hybrid Approach for High-Performance Deep
  Learning Compilation
oneDNN Graph Compiler: A Hybrid Approach for High-Performance Deep Learning Compilation
Jianhui Li
Zhennan Qin
Yijie Mei
Jingze Cui
Yunfei Song
...
Baihui Jin
Yan Zhang
Jason Ye
Eric Lin
Daniel M. Lavery
GNN
49
9
0
03 Jan 2023
UNIT: Unifying Tensorized Instruction Compilation
UNIT: Unifying Tensorized Instruction Compilation
Jian Weng
Animesh Jain
Jie Wang
Leyuan Wang
Yida Wang
Tony Nowatzki
373
32
0
21 Jan 2021
1