ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03960
90
0

Frank-Wolfe optimization for deep networks

6 June 2020
Jakob Stigenberg
    ODL
ArXiv (abs)PDFHTML
Abstract

Deep neural networks is today one of the most popular choices in classification, regression and function approximation. However, the training of such deep networks is far from trivial as there are often millions of parameters to tune. Typically, one use some optimization method that hopefully converges towards some minimum. The most popular and successful methods are based on gradient descent. In this paper, another optimization method, Frank-Wolfe optimization, is applied to a small deep network and compared to gradient descent. Although the optimization does converge, it does so slowly and not close to the speed of gradient descent. Further, in a stochastic setting, the optimization becomes very unstable and does not seem to converge unless one uses a line search approach.

View on arXiv
Comments on this paper