ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04359
  4. Cited By
Robust Controller Design for Stochastic Nonlinear Systems via Convex
  Optimization
v1v2v3 (latest)

Robust Controller Design for Stochastic Nonlinear Systems via Convex Optimization

8 June 2020
Hiroyasu Tsukamoto
Soon-Jo Chung
ArXiv (abs)PDFHTML

Papers citing "Robust Controller Design for Stochastic Nonlinear Systems via Convex Optimization"

5 / 5 papers shown
Title
QuaDUE-CCM: Interpretable Distributional Reinforcement Learning using
  Uncertain Contraction Metrics for Precise Quadrotor Trajectory Tracking
QuaDUE-CCM: Interpretable Distributional Reinforcement Learning using Uncertain Contraction Metrics for Precise Quadrotor Trajectory Tracking
Yanran Wang
James O’Keeffe
Qiuchen Qian
David E. Boyle
83
9
0
15 Jul 2022
Trajectory Optimization of Chance-Constrained Nonlinear Stochastic
  Systems for Motion Planning Under Uncertainty
Trajectory Optimization of Chance-Constrained Nonlinear Stochastic Systems for Motion Planning Under Uncertainty
Yashwanth Kumar Nakka
Soon-Jo Chung
70
23
0
05 Jun 2021
Learning-based Adaptive Control using Contraction Theory
Learning-based Adaptive Control using Contraction Theory
Hiroyasu Tsukamoto
Soon-Jo Chung
Jean-Jacques E. Slotine
64
12
0
04 Mar 2021
Control Barriers in Bayesian Learning of System Dynamics
Control Barriers in Bayesian Learning of System Dynamics
Vikas Dhiman
M. J. Khojasteh
M. Franceschetti
Nikolay Atanasov
117
67
0
29 Dec 2020
Neural Contraction Metrics for Robust Estimation and Control: A Convex
  Optimization Approach
Neural Contraction Metrics for Robust Estimation and Control: A Convex Optimization Approach
Hiroyasu Tsukamoto
Soon-Jo Chung
78
59
0
08 Jun 2020
1