ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05714
  4. Cited By
OptiLIME: Optimized LIME Explanations for Diagnostic Computer Algorithms

OptiLIME: Optimized LIME Explanations for Diagnostic Computer Algorithms

10 June 2020
Giorgio Visani
Enrico Bagli
F. Chesani
    FAtt
ArXivPDFHTML

Papers citing "OptiLIME: Optimized LIME Explanations for Diagnostic Computer Algorithms"

8 / 8 papers shown
Title
Axiomatic Explainer Globalness via Optimal Transport
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
93
1
0
13 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
Surrogate Modeling for Explainable Predictive Time Series Corrections
Surrogate Modeling for Explainable Predictive Time Series Corrections
Alfredo Lopez
Florian Sobieczky
AI4TS
43
0
0
17 Jan 2025
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Patrick Knab
Sascha Marton
Christian Bartelt
Robert Fuder
21
1
0
03 Sep 2024
A novel approach to generate datasets with XAI ground truth to evaluate
  image models
A novel approach to generate datasets with XAI ground truth to evaluate image models
Miquel Miró-Nicolau
Antoni Jaume-i-Capó
Gabriel Moyà Alcover
12
4
0
11 Feb 2023
Using Decision Tree as Local Interpretable Model in Autoencoder-based
  LIME
Using Decision Tree as Local Interpretable Model in Autoencoder-based LIME
Niloofar Ranjbar
Reza Safabakhsh
FAtt
8
5
0
07 Apr 2022
On Locality of Local Explanation Models
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
13
39
0
24 Jun 2021
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
10
397
0
19 Oct 2020
1