ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06072
  4. Cited By
Fully Unsupervised Diversity Denoising with Convolutional Variational
  Autoencoders

Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders

10 June 2020
M. Prakash
Alexander Krull
Florian Jug
    DiffM
ArXivPDFHTML

Papers citing "Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders"

5 / 5 papers shown
Title
μSplit: efficient image decomposition for microscopy data
μSplit: efficient image decomposition for microscopy data
Ashesh Ashesh
Alexander Krull
M. D. Sante
F. Pasqualini
Florian Jug
26
4
0
23 Nov 2022
Uncertainty Inspired Underwater Image Enhancement
Uncertainty Inspired Underwater Image Enhancement
Zhenqi Fu
Wu Wang
Yue Huang
Xinghao Ding
K. Ma
20
129
0
20 Jul 2022
A Theory of the Distortion-Perception Tradeoff in Wasserstein Space
A Theory of the Distortion-Perception Tradeoff in Wasserstein Space
Dror Freirich
T. Michaeli
Ron Meir
19
40
0
06 Jul 2021
Joint self-supervised blind denoising and noise estimation
Joint self-supervised blind denoising and noise estimation
J. Ollion
Charles Ollion
Elisabeth Gassiat
Luc Lehéricy
Sylvain Le Corff
17
9
0
16 Feb 2021
Improving Blind Spot Denoising for Microscopy
Improving Blind Spot Denoising for Microscopy
A. Goncharova
A. Honigmann
Florian Jug
Alexander Krull
27
26
0
19 Aug 2020
1