ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06903
  4. Cited By
On Correctness of Automatic Differentiation for Non-Differentiable
  Functions

On Correctness of Automatic Differentiation for Non-Differentiable Functions

12 June 2020
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
ArXivPDFHTML

Papers citing "On Correctness of Automatic Differentiation for Non-Differentiable Functions"

6 / 6 papers shown
Title
BrowNNe: Brownian Nonlocal Neurons & Activation Functions
BrowNNe: Brownian Nonlocal Neurons & Activation Functions
Sriram Nagaraj
Truman Hickok
31
0
0
21 Jun 2024
On the Correctness of Automatic Differentiation for Neural Networks with
  Machine-Representable Parameters
On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters
Wonyeol Lee
Sejun Park
A. Aiken
PINN
18
6
0
31 Jan 2023
Automatic differentiation of nonsmooth iterative algorithms
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
23
22
0
31 May 2022
An Algebraic Approach to Learning and Grounding
An Algebraic Approach to Learning and Grounding
Johanna Björklund
Adam Dahlgren Lindström
F. Drewes
24
0
0
06 Apr 2022
A Gradient Sampling Algorithm for Stratified Maps with Applications to
  Topological Data Analysis
A Gradient Sampling Algorithm for Stratified Maps with Applications to Topological Data Analysis
Jacob Leygonie
Mathieu Carrière
Théo Lacombe
S. Oudot
11
9
0
01 Sep 2021
The structure of conservative gradient fields
The structure of conservative gradient fields
A. Lewis
Tonghua Tian
AI4CE
17
8
0
03 Jan 2021
1