Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.07134
Cited By
v1
v2
v3 (latest)
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
12 June 2020
A. Koskela
Hibiki Ito
Lukas Prediger
Antti Honkela
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT"
40 / 40 papers shown
Title
(
ε
,
δ
)
(\varepsilon, δ)
(
ε
,
δ
)
Considered Harmful: Best Practices for Reporting Differential Privacy Guarantees
Juan Felipe Gomez
B. Kulynych
G. Kaissis
Jamie Hayes
Borja Balle
Antti Honkela
104
0
0
13 Mar 2025
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
143
10
0
08 Oct 2024
Better Gaussian Mechanism using Correlated Noise
Christian Janos Lebeda
93
4
0
13 Aug 2024
Weights Shuffling for Improving DPSGD in Transformer-based Models
Jungang Yang
Zhe Ji
Liyao Xiang
101
0
0
22 Jul 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
88
14
0
10 Jul 2024
Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
Lynn Chua
Badih Ghazi
Yangsibo Huang
Pritish Kamath
Ravi Kumar
Daogao Liu
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
104
14
0
20 Jun 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
124
10
0
27 May 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
89
2
0
22 Feb 2024
Privacy Profiles for Private Selection
Antti Koskela
Rachel Redberg
Yu-Xiang Wang
86
2
0
09 Feb 2024
Subsampling is not Magic: Why Large Batch Sizes Work for Differentially Private Stochastic Optimisation
Ossi Raisa
Hibiki Ito
Antti Honkela
77
6
0
06 Feb 2024
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of Gaussians Mechanisms
Arun Ganesh
75
3
0
17 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
218
26
0
09 Jan 2024
Improving the Privacy and Practicality of Objective Perturbation for Differentially Private Linear Learners
Rachel Redberg
Antti Koskela
Yu-Xiang Wang
130
6
0
31 Dec 2023
Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency through MUltistage Sampling Technique (MUST)
Xingyuan Zhao
Fang Liu
55
0
0
20 Dec 2023
Privacy-Aware Document Visual Question Answering
Rubèn Pérez Tito
Khanh Nguyen
Marlon Tobaben
Raouf Kerkouche
Mohamed Ali Souibgui
...
Lei Kang
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
70
13
0
15 Dec 2023
Analyzing the Shuffle Model through the Lens of Quantitative Information Flow
Mireya Jurado
Ramon G. Gonze
Mário S. Alvim
C. Palamidessi
61
1
0
22 May 2023
A Randomized Approach for Tight Privacy Accounting
Jiachen T. Wang
Saeed Mahloujifar
Tong Wu
R. Jia
Prateek Mittal
106
10
0
17 Apr 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
59
3
0
19 Feb 2023
Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Anastasia Koloskova
Ryan McKenna
Zachary B. Charles
Keith Rush
Brendan McMahan
124
9
0
02 Feb 2023
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
Ergute Bao
Yizheng Zhu
X. Xiao
Yifan Yang
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
82
19
0
08 Dec 2022
DPVIm: Differentially Private Variational Inference Improved
Hibiki Ito
Lukas Prediger
Antti Honkela
Samuel Kaski
78
3
0
28 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
136
54
0
02 Oct 2022
Individual Privacy Accounting with Gaussian Differential Privacy
A. Koskela
Marlon Tobaben
Antti Honkela
107
20
0
30 Sep 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
65
7
0
20 Aug 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
104
15
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
79
43
0
10 Jul 2022
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
Fei Wei
38
10
0
25 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
83
40
0
10 Jun 2022
Group privacy for personalized federated learning
Filippo Galli
Sayan Biswas
Kangsoo Jung
Tommaso Cucinotta
C. Palamidessi
FedML
77
12
0
07 Jun 2022
Tight Differential Privacy Guarantees for the Shuffle Model with
k
k
k
-Randomized Response
Sayan Biswas
Kangsoo Jung
C. Palamidessi
65
0
0
18 May 2022
Protecting Data from all Parties: Combining FHE and DP in Federated Learning
Arnaud Grivet Sébert
Renaud Sirdey
Oana Stan
Cédric Gouy-Pailler
FedML
35
0
0
09 May 2022
Differential Private Discrete Noise Adding Mechanism: Conditions, Properties and Optimization
Shuying Qin
Jianping He
Chongrong Fang
J. Lam
41
6
0
19 Mar 2022
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
101
66
0
16 Feb 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
260
372
0
13 Oct 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
64
104
0
16 Jun 2021
Numerical Composition of Differential Privacy
Sivakanth Gopi
Y. Lee
Lukas Wutschitz
97
183
0
05 Jun 2021
Tight Accounting in the Shuffle Model of Differential Privacy
A. Koskela
Mikko A. Heikkilä
Antti Honkela
FedML
65
17
0
01 Jun 2021
D3p -- A Python Package for Differentially-Private Probabilistic Programming
Lukas Prediger
Niki Loppi
Samuel Kaski
Antti Honkela
79
6
0
22 Mar 2021
Computing Differential Privacy Guarantees for Heterogeneous Compositions Using FFT
A. Koskela
Antti Honkela
69
20
0
24 Feb 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
109
42
0
05 Feb 2021
1