ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07845
37
12

Towards Gender-Neutral Face Descriptors for Mitigating Bias in Face Recognition

14 June 2020
Prithviraj Dhar
Joshua Gleason
Hossein Souri
Carlos D. Castillo
Rama Chellappa
    FaML
    CVBM
ArXivPDFHTML
Abstract

State-of-the-art deep networks implicitly encode gender information while being trained for face recognition. Gender is often viewed as an important attribute with respect to identifying faces. However, the implicit encoding of gender information in face descriptors has two major issues: (a.) It makes the descriptors susceptible to privacy leakage, i.e. a malicious agent can be trained to predict the face gender from such descriptors. (b.) It appears to contribute to gender bias in face recognition, i.e. we find a significant difference in the recognition accuracy of DCNNs on male and female faces. Therefore, we present a novel `Adversarial Gender De-biasing algorithm (AGENDA)' to reduce the gender information present in face descriptors obtained from previously trained face recognition networks. We show that AGENDA significantly reduces gender predictability of face descriptors. Consequently, we are also able to reduce gender bias in face verification while maintaining reasonable recognition performance.

View on arXiv
Comments on this paper