Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.11441
Cited By
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes
19 June 2020
Mengdi Xu
Wenhao Ding
Jiacheng Zhu
Zuxin Liu
Baiming Chen
Ding Zhao
CLL
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes"
7 / 7 papers shown
Title
Bayesian inference for data-efficient, explainable, and safe robotic motion planning: A review
Chengmin Zhou
Chao Wang
Haseeb Hassan
H. Shah
Bingding Huang
P. Fränti
3DV
25
3
0
16 Jul 2023
Online Reinforcement Learning in Non-Stationary Context-Driven Environments
Pouya Hamadanian
Arash Nasr-Esfahany
Malte Schwarzkopf
Siddartha Sen
MohammadIman Alizadeh
CLL
OffRL
40
0
0
04 Feb 2023
Building a Subspace of Policies for Scalable Continual Learning
Jean-Baptiste Gaya
T. Doan
Lucas Page-Caccia
Laure Soulier
Ludovic Denoyer
Roberta Raileanu
CLL
16
29
0
18 Nov 2022
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability
Mengdi Xu
Zuxin Liu
Peide Huang
Wenhao Ding
Zhepeng Cen
Bo-wen Li
Ding Zhao
61
45
0
16 Sep 2022
Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training
Peide Huang
Mengdi Xu
Fei Fang
Ding Zhao
56
37
0
19 Feb 2022
Improving the Robustness of Reinforcement Learning Policies with
L
1
\mathcal{L}_{1}
L
1
Adaptive Control
Y. Cheng
Penghui Zhao
F. Wang
D. Block
N. Hovakimyan
31
8
0
03 Dec 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,568
0
09 Mar 2017
1