ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11783
  4. Cited By
Missing Features Reconstruction Using a Wasserstein Generative
  Adversarial Imputation Network

Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network

21 June 2020
Magda Friedjungová
Daniel Vasata
Maksym Balatsko
M. Jiřina
    DiffM
    SyDa
    GAN
ArXivPDFHTML

Papers citing "Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network"

3 / 3 papers shown
Title
ClueGAIN: Application of Transfer Learning On Generative Adversarial
  Imputation Nets (GAIN)
ClueGAIN: Application of Transfer Learning On Generative Adversarial Imputation Nets (GAIN)
Simiao Zhao
GAN
23
0
0
06 Feb 2023
Fairness in Missing Data Imputation
Fairness in Missing Data Imputation
Yiliang Zhang
Q. Long
36
12
0
22 Oct 2021
Anytime 3D Object Reconstruction using Multi-modal Variational
  Autoencoder
Anytime 3D Object Reconstruction using Multi-modal Variational Autoencoder
Hyeonwoo Yu
Jean Oh
DRL
42
5
0
25 Jan 2021
1