Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.14551
Cited By
v1
v2 (latest)
Prediction with Approximated Gaussian Process Dynamical Models
25 June 2020
Thomas Beckers
Sandra Hirche
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Prediction with Approximated Gaussian Process Dynamical Models"
8 / 8 papers shown
Title
Koopman-Equivariant Gaussian Processes
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
102
2
0
10 Feb 2025
Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework
Manish Prajapat
Amon Lahr
Johannes Köhler
Andreas Krause
Melanie Zeilinger
54
3
0
13 Sep 2024
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
Kaiyuan Tan
Peilun Li
Thomas Beckers
AI4CE
54
3
0
17 Jun 2024
Gaussian Process-Based Learning Control of Underactuated Balance Robots with an External and Internal Convertible Modeling Structure
Feng Han
Jingang Yi
59
1
0
15 Dec 2023
Gaussian Process-Enhanced, External and Internal Convertible (EIC) Form-Based Control of Underactuated Balance Robots
Feng Han
Jingang Yi
47
2
0
27 Sep 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
82
17
0
15 May 2023
Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States
Robert Lefringhausen
Supitsana Srithasan
Armin Lederer
Sandra Hirche
71
6
0
31 Mar 2023
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Yuhao Liu
Marzieh Ajirak
Petar M. Djurić
96
14
0
29 Jan 2023
1