ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15266
  4. Cited By
Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
  Problems

Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems

27 June 2020
Quoc Tran-Dinh
Deyi Liu
Lam M. Nguyen
ArXivPDFHTML

Papers citing "Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems"

3 / 3 papers shown
Title
Gradient Descent-Type Methods: Background and Simple Unified Convergence
  Analysis
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
14
0
0
19 Dec 2022
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax
  Problems
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems
Hongchang Gao
13
16
0
06 Dec 2022
Learning from History for Byzantine Robust Optimization
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
22
172
0
18 Dec 2020
1