ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15505
15
28

1st Place Solution for Waymo Open Dataset Challenge -- 3D Detection and Domain Adaptation

28 June 2020
Zhuangzhuang Ding
Yihan Hu
Runzhou Ge
Li Huang
Sijia Chen
Yu Wang
Jie Liao
    3DPC
ArXivPDFHTML
Abstract

In this technical report, we introduce our winning solution "HorizonLiDAR3D" for the 3D detection track and the domain adaptation track in Waymo Open Dataset Challenge at CVPR 2020. Many existing 3D object detectors include prior-based anchor box design to account for different scales and aspect ratios and classes of objects, which limits its capability of generalization to a different dataset or domain and requires post-processing (e.g. Non-Maximum Suppression (NMS)). We proposed a one-stage, anchor-free and NMS-free 3D point cloud object detector AFDet, using object key-points to encode the 3D attributes, and to learn an end-to-end point cloud object detection without the need of hand-engineering or learning the anchors. AFDet serves as a strong baseline in our winning solution and significant improvements are made over this baseline during the challenges. Specifically, we design stronger networks and enhance the point cloud data using densification and point painting. To leverage camera information, we append/paint additional attributes to each point by projecting them to camera space and gathering image-based perception information. The final detection performance also benefits from model ensemble and Test-Time Augmentation (TTA) in both the 3D detection track and the domain adaptation track. Our solution achieves the 1st place with 77.11% mAPH/L2 and 69.49% mAPH/L2 respectively on the 3D detection track and the domain adaptation track.

View on arXiv
Comments on this paper