ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15568
16
0

Reliable Categorical Variational Inference with Mixture of Discrete Normalizing Flows

28 June 2020
Tomasz Kuśmierczyk
Arto Klami
    BDL
    DRL
ArXivPDFHTML
Abstract

Variational approximations are increasingly based on gradient-based optimization of expectations estimated by sampling. Handling discrete latent variables is then challenging because the sampling process is not differentiable. Continuous relaxations, such as the Gumbel-Softmax for categorical distribution, enable gradient-based optimization, but do not define a valid probability mass for discrete observations. In practice, selecting the amount of relaxation is difficult and one needs to optimize an objective that does not align with the desired one, causing problems especially with models having strong meaningful priors. We provide an alternative differentiable reparameterization for categorical distribution by composing it as a mixture of discrete normalizing flows. It defines a proper discrete distribution, allows directly optimizing the evidence lower bound, and is less sensitive to the hyperparameter controlling relaxation.

View on arXiv
Comments on this paper