Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.16234
Cited By
True to the Model or True to the Data?
29 June 2020
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDI
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"True to the Model or True to the Data?"
48 / 98 papers shown
Title
Incremental Permutation Feature Importance (iPFI): Towards Online Explanations on Data Streams
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
66
22
0
05 Sep 2022
Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation
Andrew Herren
P. R. Hahn
FAtt
53
10
0
21 Aug 2022
Unifying local and global model explanations by functional decomposition of low dimensional structures
M. Hiabu
Josephine T. Meyer
Marvin N. Wright
FAtt
82
21
0
12 Aug 2022
Comparing Baseline Shapley and Integrated Gradients for Local Explanation: Some Additional Insights
Tianshu Feng
Zhipu Zhou
Tarun Joshi
V. Nair
FAtt
48
5
0
12 Aug 2022
Learning Unsupervised Hierarchies of Audio Concepts
Darius Afchar
Romain Hennequin
Vincent Guigue
84
2
0
21 Jul 2022
Algorithms to estimate Shapley value feature attributions
Hugh Chen
Ian Covert
Scott M. Lundberg
Su-In Lee
TDI
FAtt
98
240
0
15 Jul 2022
SHAP-XRT: The Shapley Value Meets Conditional Independence Testing
Jacopo Teneggi
Beepul Bharti
Yaniv Romano
Jeremias Sulam
FAtt
103
5
0
14 Jul 2022
Shapley Computations Using Surrogate Model-Based Trees
Zhipu Zhou
Jie Chen
Linwei Hu
44
0
0
11 Jul 2022
Inherent Inconsistencies of Feature Importance
Nimrod Harel
Uri Obolski
Ran Gilad-Bachrach
FAtt
28
0
0
16 Jun 2022
Order-sensitive Shapley Values for Evaluating Conceptual Soundness of NLP Models
Kaiji Lu
Anupam Datta
50
0
0
01 Jun 2022
Explaining Preferences with Shapley Values
Robert Hu
Siu Lun Chau
Jaime Ferrando Huertas
Dino Sejdinovic
TDI
FAtt
80
6
0
26 May 2022
Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees
Joseph Janssen
Vincent Guan
Elina Robeva
66
7
0
21 Apr 2022
Faith-Shap: The Faithful Shapley Interaction Index
Che-Ping Tsai
Chih-Kuan Yeh
Pradeep Ravikumar
TDI
114
55
0
02 Mar 2022
Threading the Needle of On and Off-Manifold Value Functions for Shapley Explanations
Chih-Kuan Yeh
Kuan-Yun Lee
Frederick Liu
Pradeep Ravikumar
FAtt
TDI
52
9
0
24 Feb 2022
Evaluating Feature Attribution Methods in the Image Domain
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
69
23
0
22 Feb 2022
GRAPHSHAP: Explaining Identity-Aware Graph Classifiers Through the Language of Motifs
Alan Perotti
P. Bajardi
Francesco Bonchi
Andre' Panisson
FAtt
36
8
0
17 Feb 2022
Monitoring Model Deterioration with Explainable Uncertainty Estimation via Non-parametric Bootstrap
Carlos Mougan
Dan Saattrup Nielsen
102
15
0
27 Jan 2022
Explainability in Music Recommender Systems
Darius Afchar
Alessandro B. Melchiorre
Markus Schedl
Romain Hennequin
Elena V. Epure
Manuel Moussallam
105
50
0
25 Jan 2022
Exact Shapley Values for Local and Model-True Explanations of Decision Tree Ensembles
Thomas W. Campbell
H. Roder
R. Georgantas
J. Roder
FedML
TDI
FAtt
65
16
0
16 Dec 2021
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
109
17
0
26 Nov 2021
Model-agnostic bias mitigation methods with regressor distribution control for Wasserstein-based fairness metrics
A. Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan
41
5
0
19 Nov 2021
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
107
51
0
27 Oct 2021
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
83
20
0
18 Oct 2021
Unraveling the graph structure of tabular data through Bayesian and spectral analysis
B. M. F. Resende
Eric K. Tokuda
L. D. F. Costa
CML
63
2
0
04 Oct 2021
Fast TreeSHAP: Accelerating SHAP Value Computation for Trees
Jilei Yang
FAtt
105
37
0
20 Sep 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
84
1
0
08 Sep 2021
Bringing a Ruler Into the Black Box: Uncovering Feature Impact from Individual Conditional Expectation Plots
A. Yeh
A. Ngo
FAtt
42
4
0
06 Sep 2021
Data-driven advice for interpreting local and global model predictions in bioinformatics problems
Markus Loecher
Qi Wu
FAtt
17
1
0
13 Aug 2021
Seven challenges for harmonizing explainability requirements
Jiahao Chen
Victor Storchan
71
8
0
11 Aug 2021
Feature Synergy, Redundancy, and Independence in Global Model Explanations using SHAP Vector Decomposition
Jan Ittner
Lukasz Bolikowski
Konstantin Hemker
Ricardo Kennedy
FAtt
46
7
0
26 Jul 2021
A Decision Support System for Safer Airplane Landings: Predicting Runway Conditions Using XGBoost and Explainable AI
A. Midtfjord
R. D. Bin
A. Huseby
28
27
0
01 Jul 2021
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
73
40
0
24 Jun 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
115
67
0
23 Jun 2021
groupShapley: Efficient prediction explanation with Shapley values for feature groups
Martin Jullum
Annabelle Redelmeier
K. Aas
TDI
FAtt
80
22
0
23 Jun 2021
Accurate Shapley Values for explaining tree-based models
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
TDI
FAtt
69
15
0
07 Jun 2021
Do not explain without context: addressing the blind spot of model explanations
Katarzyna Wo'znica
Katarzyna Pkekala
Hubert Baniecki
Wojciech Kretowicz
El.zbieta Sienkiewicz
P. Biecek
61
1
0
28 May 2021
Explaining a Series of Models by Propagating Shapley Values
Hugh Chen
Scott M. Lundberg
Su-In Lee
TDI
FAtt
103
139
0
30 Apr 2021
Fast Hierarchical Games for Image Explanations
Jacopo Teneggi
Alexandre Luster
Jeremias Sulam
FAtt
54
21
0
13 Apr 2021
The Shapley Value of coalition of variables provides better explanations
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
FAtt
TDI
51
5
0
24 Mar 2021
Explaining predictive models using Shapley values and non-parametric vine copulas
K. Aas
T. Nagler
Martin Jullum
Anders Løland
FAtt
72
20
0
12 Feb 2021
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
151
252
0
21 Nov 2020
Wasserstein-based fairness interpretability framework for machine learning models
A. Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan
FAtt
81
15
0
06 Nov 2020
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
129
90
0
27 Oct 2020
Marginal Contribution Feature Importance -- an Axiomatic Approach for The Natural Case
Amnon Catav
Boyang Fu
J. Ernst
S. Sankararaman
Ran Gilad-Bachrach
FAtt
41
3
0
15 Oct 2020
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
85
140
0
08 Jul 2020
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
143
32
0
16 Jun 2020
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAtt
TDI
87
103
0
01 Jun 2020
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
90
635
0
25 Mar 2019
Previous
1
2