ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16322
  4. Cited By
Scaling Symbolic Methods using Gradients for Neural Model Explanation

Scaling Symbolic Methods using Gradients for Neural Model Explanation

29 June 2020
Subham S. Sahoo
Subhashini Venugopalan
Li Li
Rishabh Singh
Patrick F. Riley
    FAtt
ArXivPDFHTML

Papers citing "Scaling Symbolic Methods using Gradients for Neural Model Explanation"

4 / 4 papers shown
Title
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate
  Convolutional Neural Network Architecture From Truth Tables
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
40
1
0
18 Aug 2022
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
251
1,842
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
933
0
21 Oct 2016
Learning Attitudes and Attributes from Multi-Aspect Reviews
Learning Attitudes and Attributes from Multi-Aspect Reviews
Julian McAuley
J. Leskovec
Dan Jurafsky
200
296
0
15 Oct 2012
1