ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16606
  4. Cited By
Spatiotemporal Multi-Resolution Approximations for Analyzing Global
  Environmental Data

Spatiotemporal Multi-Resolution Approximations for Analyzing Global Environmental Data

30 June 2020
M. Appel
E. Pebesma
ArXiv (abs)PDFHTML

Papers citing "Spatiotemporal Multi-Resolution Approximations for Analyzing Global Environmental Data"

4 / 4 papers shown
Title
Multi-resolution filters via linear projection for large spatio-temporal
  datasets
Multi-resolution filters via linear projection for large spatio-temporal datasets
Toshihiro Hirano
Tsunehiro Ishihara
41
0
0
10 Jan 2024
Distributed model building and recursive integration for big spatial
  data modeling
Distributed model building and recursive integration for big spatial data modeling
Emily C. Hector
Brian J. Reich
A. Eloyan
105
3
0
25 May 2023
Efficient data-driven gap filling of satellite image time series using
  deep neural networks with partial convolutions
Efficient data-driven gap filling of satellite image time series using deep neural networks with partial convolutions
M. Appel
67
3
0
18 Aug 2022
Big problems in spatio-temporal disease mapping: methods and software
Big problems in spatio-temporal disease mapping: methods and software
E. Orozco-Acosta
A. Adin
M. D. Ugarte
67
13
0
20 Jan 2022
1