ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16955
  4. Cited By
We Should at Least Be Able to Design Molecules That Dock Well

We Should at Least Be Able to Design Molecules That Dock Well

20 June 2020
Tobiasz Ciepliński
Tomasz Danel
Sabina Podlewska
Stanislaw Jastrzebski
ArXivPDFHTML

Papers citing "We Should at Least Be Able to Design Molecules That Dock Well"

5 / 5 papers shown
Title
Structure-aware generation of drug-like molecules
Structure-aware generation of drug-like molecules
Pavol Drotár
Arian R. Jamasb
Ben Day
Cătălina Cangea
Pietro Lió
20
15
0
07 Nov 2021
DOCKSTRING: easy molecular docking yields better benchmarks for ligand
  design
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
30
73
0
29 Oct 2021
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
181
878
0
07 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
208
1,329
0
12 Feb 2018
1