Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.00878
Cited By
On the Outsized Importance of Learning Rates in Local Update Methods
2 July 2020
Zachary B. Charles
Jakub Konecný
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Outsized Importance of Learning Rates in Local Update Methods"
17 / 17 papers shown
Title
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
Kumar Kshitij Patel
Margalit Glasgow
Ali Zindari
Lingxiao Wang
Sebastian U. Stich
Ziheng Cheng
Nirmit Joshi
Nathan Srebro
44
6
0
19 May 2024
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling
Nicolò Dal Fabbro
A. Mitra
George J. Pappas
FedML
33
12
0
14 May 2023
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
Han Wang
A. Mitra
Hamed Hassani
George J. Pappas
James Anderson
FedML
24
21
0
04 Feb 2023
Straggler-Resilient Differentially-Private Decentralized Learning
Yauhen Yakimenka
Chung-Wei Weng
Hsuan-Yin Lin
E. Rosnes
J. Kliewer
21
6
0
06 Dec 2022
Federated Hypergradient Descent
A. K. Kan
FedML
32
3
0
03 Nov 2022
Online Meta-Learning for Model Update Aggregation in Federated Learning for Click-Through Rate Prediction
Xianghang Liu
Bartlomiej Twardowski
Tri Kurniawan Wijaya
FedML
21
1
0
30 Aug 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
24
75
0
27 May 2022
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao
Lingxiao Wang
Mladen Kolar
Ziqi Liu
Zhiqiang Zhang
Jun Zhou
Chaochao Chen
FedML
26
10
0
28 Dec 2021
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
20
16
0
09 Dec 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
24
71
0
27 Oct 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
30
14
0
16 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Effective Federated Adaptive Gradient Methods with Non-IID Decentralized Data
Qianqian Tong
Guannan Liang
J. Bi
FedML
33
27
0
14 Sep 2020
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
157
760
0
28 Sep 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
281
11,681
0
09 Mar 2017
1