ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01154
  4. Cited By
Federated Learning with Compression: Unified Analysis and Sharp
  Guarantees

Federated Learning with Compression: Unified Analysis and Sharp Guarantees

2 July 2020
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
    FedML
ArXivPDFHTML

Papers citing "Federated Learning with Compression: Unified Analysis and Sharp Guarantees"

50 / 55 papers shown
Title
On the Byzantine Fault Tolerance of signSGD with Majority Vote
On the Byzantine Fault Tolerance of signSGD with Majority Vote
Emanuele Mengoli
Luzius Moll
Virgilio Strozzi
El-Mahdi El-Mhamdi
AAML
FedML
55
0
0
26 Feb 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
35
0
0
11 Nov 2024
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
52
5
0
17 Sep 2024
Communication-efficient Vertical Federated Learning via Compressed Error Feedback
Communication-efficient Vertical Federated Learning via Compressed Error Feedback
Pedro Valdeira
João Xavier
Cláudia Soares
Yuejie Chi
FedML
35
4
0
20 Jun 2024
Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Zhe Li
Bicheng Ying
Zidong Liu
Haibo Yang
Haibo Yang
FedML
59
3
0
24 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
28
3
0
02 May 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
39
3
0
07 Mar 2024
FBChain: A Blockchain-based Federated Learning Model with Efficiency and Secure Communication
FBChain: A Blockchain-based Federated Learning Model with Efficiency and Secure Communication
Yang Li
Chunhe Xia
Wei Liu
35
0
0
21 Nov 2023
Distributed Personalized Empirical Risk Minimization
Distributed Personalized Empirical Risk Minimization
Yuyang Deng
Mohammad Mahdi Kamani
Pouria Mahdavinia
M. Mahdavi
21
4
0
26 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient
  Algorithms and Improved Rates
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
35
5
0
15 Oct 2023
Dynamic Regularized Sharpness Aware Minimization in Federated Learning:
  Approaching Global Consistency and Smooth Landscape
Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape
Yan Sun
Li Shen
Shi-Yong Chen
Liang Ding
Dacheng Tao
FedML
31
33
0
19 May 2023
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup
  under Markovian Sampling
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling
Nicolò Dal Fabbro
A. Mitra
George J. Pappas
FedML
33
12
0
14 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
26
7
0
12 May 2023
Performative Federated Learning: A Solution to Model-Dependent and
  Heterogeneous Distribution Shifts
Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts
Kun Jin
Tongxin Yin
Zhong Chen
Zeyu Sun
Xueru Zhang
Yang Liu
Mingyan D. Liu
OOD
FedML
13
6
0
08 May 2023
FS-Real: Towards Real-World Cross-Device Federated Learning
FS-Real: Towards Real-World Cross-Device Federated Learning
Daoyuan Chen
Dawei Gao
Yuexiang Xie
Xuchen Pan
Zitao Li
Yaliang Li
Bolin Ding
Jingren Zhou
109
26
0
23 Mar 2023
Federated Gradient Matching Pursuit
Federated Gradient Matching Pursuit
Halyun Jeong
Deanna Needell
Jing Qin
FedML
35
1
0
20 Feb 2023
Federated Automatic Differentiation
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Federated Learning with Flexible Control
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
Distributed Linear Bandits under Communication Constraints
Distributed Linear Bandits under Communication Constraints
Sudeep Salgia
Qing Zhao
26
7
0
04 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new
  algorithms
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
  Realistic Healthcare Settings
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings
Jean Ogier du Terrail
Samy Ayed
Edwige Cyffers
Felix Grimberg
Chaoyang He
...
Sai Praneeth Karimireddy
Marco Lorenzi
Giovanni Neglia
Marc Tommasi
M. Andreux
FedML
36
142
0
10 Oct 2022
On the Convergence of Multi-Server Federated Learning with Overlapping
  Area
On the Convergence of Multi-Server Federated Learning with Overlapping Area
Zhe Qu
Xingyu Li
Jie Xu
Bo Tang
Zhuo Lu
Yao-Hong Liu
FedML
45
14
0
16 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary
  Survey
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
49
59
0
02 Aug 2022
Straggler-Resilient Personalized Federated Learning
Straggler-Resilient Personalized Federated Learning
Isidoros Tziotis
Zebang Shen
Ramtin Pedarsani
Hamed Hassani
Aryan Mokhtari
FedML
31
9
0
05 Jun 2022
Edge Learning for B5G Networks with Distributed Signal Processing:
  Semantic Communication, Edge Computing, and Wireless Sensing
Edge Learning for B5G Networks with Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing
Wei Xu
Zhaohui Yang
Derrick Wing Kwan Ng
Marco Levorato
Yonina C. Eldar
Mérouane Debbah
28
398
0
01 Jun 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
24
75
0
27 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
16
10
0
08 May 2022
Communication-Efficient Adaptive Federated Learning
Communication-Efficient Adaptive Federated Learning
Yujia Wang
Lu Lin
Jinghui Chen
FedML
19
69
0
05 May 2022
On the Convergence of Momentum-Based Algorithms for Federated Bilevel
  Optimization Problems
On the Convergence of Momentum-Based Algorithms for Federated Bilevel Optimization Problems
Hongchang Gao
FedML
18
1
0
28 Apr 2022
A review of Federated Learning in Intrusion Detection Systems for IoT
A review of Federated Learning in Intrusion Detection Systems for IoT
Aitor Belenguer
J. Navaridas
J. A. Pascual
20
15
0
26 Apr 2022
Federated Progressive Sparsification (Purge, Merge, Tune)+
Federated Progressive Sparsification (Purge, Merge, Tune)+
Dimitris Stripelis
Umang Gupta
Greg Ver Steeg
J. Ambite
FedML
15
9
0
26 Apr 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
29
38
0
04 Apr 2022
Linear Stochastic Bandits over a Bit-Constrained Channel
Linear Stochastic Bandits over a Bit-Constrained Channel
A. Mitra
Hamed Hassani
George J. Pappas
31
8
0
02 Mar 2022
Bitwidth Heterogeneous Federated Learning with Progressive Weight
  Dequantization
Bitwidth Heterogeneous Federated Learning with Progressive Weight Dequantization
Jaehong Yoon
Geondo Park
Wonyong Jeong
Sung Ju Hwang
FedML
19
19
0
23 Feb 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
14
30
0
25 Dec 2021
Optimal Rate Adaption in Federated Learning with Compressed
  Communications
Optimal Rate Adaption in Federated Learning with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Jiangchuan Liu
FedML
30
38
0
13 Dec 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
  Applications
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
32
416
0
24 Nov 2021
Wyner-Ziv Gradient Compression for Federated Learning
Wyner-Ziv Gradient Compression for Federated Learning
Kai Liang
Huiru Zhong
Haoning Chen
Youlong Wu
FedML
16
8
0
16 Nov 2021
Adaptive Distillation: Aggregating Knowledge from Multiple Paths for
  Efficient Distillation
Adaptive Distillation: Aggregating Knowledge from Multiple Paths for Efficient Distillation
Sumanth Chennupati
Mohammad Mahdi Kamani
Zhongwei Cheng
Lin Chen
19
4
0
19 Oct 2021
Resource-constrained Federated Edge Learning with Heterogeneous Data:
  Formulation and Analysis
Resource-constrained Federated Edge Learning with Heterogeneous Data: Formulation and Analysis
Yi Liu
Yuanshao Zhu
James J. Q. Yu
FedML
19
28
0
14 Oct 2021
Federated Learning via Plurality Vote
Federated Learning via Plurality Vote
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
24
8
0
06 Oct 2021
Federated Multi-Task Learning under a Mixture of Distributions
Federated Multi-Task Learning under a Mixture of Distributions
Othmane Marfoq
Giovanni Neglia
A. Bellet
Laetitia Kameni
Richard Vidal
FedML
29
269
0
23 Aug 2021
Communication-Efficient Federated Learning via Predictive Coding
Communication-Efficient Federated Learning via Predictive Coding
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
19
14
0
02 Aug 2021
From Distributed Machine Learning to Federated Learning: A Survey
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
44
243
0
29 Apr 2021
Distributed Learning in Wireless Networks: Recent Progress and Future
  Challenges
Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
Mingzhe Chen
Deniz Gündüz
Kaibin Huang
Walid Saad
M. Bennis
Aneta Vulgarakis Feljan
H. Vincent Poor
21
401
0
05 Apr 2021
Moshpit SGD: Communication-Efficient Decentralized Training on
  Heterogeneous Unreliable Devices
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices
Max Ryabinin
Eduard A. Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
27
31
0
04 Mar 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
28
108
0
15 Feb 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Faster Non-Convex Federated Learning via Global and Local Momentum
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
27
82
0
07 Dec 2020
Advancements of federated learning towards privacy preservation: from
  federated learning to split learning
Advancements of federated learning towards privacy preservation: from federated learning to split learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
FedML
14
82
0
25 Nov 2020
12
Next