ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01465
  4. Cited By
Deep-PowerX: A Deep Learning-Based Framework for Low-Power Approximate
  Logic Synthesis

Deep-PowerX: A Deep Learning-Based Framework for Low-Power Approximate Logic Synthesis

3 July 2020
Ghasem Pasandi
Mackenzie Peterson
Moisés Herrera
Shahin Nazarian
Massoud Pedram
ArXiv (abs)PDFHTML

Papers citing "Deep-PowerX: A Deep Learning-Based Framework for Low-Power Approximate Logic Synthesis"

3 / 3 papers shown
Explicit Sign-Magnitude Encoders Enable Power-Efficient Multipliers
Explicit Sign-Magnitude Encoders Enable Power-Efficient Multipliers
Felix Arnold
Maxence Bouvier
Ryan Amaudruz
Renzo Andri
Lukas Cavigelli
169
1
0
24 Jul 2025
AISYN: AI-driven Reinforcement Learning-Based Logic Synthesis Framework
AISYN: AI-driven Reinforcement Learning-Based Logic Synthesis Framework
Ghasem Pasandi
Sreedhar Pratty
James Forsyth
104
8
0
08 Feb 2023
A Survey and Perspective on Artificial Intelligence for Security-Aware
  Electronic Design Automation
A Survey and Perspective on Artificial Intelligence for Security-Aware Electronic Design Automation
D. Koblah
R. Acharya
Daniel Capecci
Olivia P. Dizon-Paradis
Shahin Tajik
F. Ganji
D. Woodard
Domenic Forte
243
23
0
19 Apr 2022
1
Page 1 of 1