ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04457
  4. Cited By
Accelerating Multigrid-based Hierarchical Scientific Data Refactoring on
  GPUs
v1v2 (latest)

Accelerating Multigrid-based Hierarchical Scientific Data Refactoring on GPUs

8 July 2020
Jieyang Chen
Lipeng Wan
Xin Liang
Ben Whitney
Qing Liu
D. Pugmire
Nick Thompson
M. Wolf
T. Munson
Ian Foster
S. Klasky
ArXiv (abs)PDFHTML

Papers citing "Accelerating Multigrid-based Hierarchical Scientific Data Refactoring on GPUs"

11 / 11 papers shown
Title
Efficient Compression of Sparse Accelerator Data Using Implicit Neural
  Representations and Importance Sampling
Efficient Compression of Sparse Accelerator Data Using Implicit Neural Representations and Importance Sampling
Xihaier Luo
Samuel Lurvey
Yi Huang
Yihui Ren
Jin-zhi Huang
Byung-Jun Yoon
95
0
0
02 Dec 2024
Overcoming Memory Constraints in Quantum Circuit Simulation with a
  High-Fidelity Compression Framework
Overcoming Memory Constraints in Quantum Circuit Simulation with a High-Fidelity Compression Framework
Boyuan Zhang
Bo Fang
Fanjiang Ye
Yida Gu
Nathan Tallent
Guangming Tan
Dingwen Tao
52
1
0
17 Oct 2024
Lessons Learned on the Path to Guaranteeing the Error Bound in Lossy
  Quantizers
Lessons Learned on the Path to Guaranteeing the Error Bound in Lossy Quantizers
Alex Fallin
Martin Burtscher
43
2
0
21 Jul 2024
Accelerating Communication in Deep Learning Recommendation Model
  Training with Dual-Level Adaptive Lossy Compression
Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression
Hao Feng
Boyuan Zhang
Fanjiang Ye
Min Si
Ching-Hsiang Chu
...
Summer Deng
Yuchen Hao
Pavan Balaji
Tong Geng
Dingwen Tao
AI4CE
80
2
0
05 Jul 2024
A Survey on Error-Bounded Lossy Compression for Scientific Datasets
A Survey on Error-Bounded Lossy Compression for Scientific Datasets
Sheng Di
Jinyang Liu
Kai Zhao
Xin Liang
Robert Underwood
...
Jon C. Calhoun
Guanpeng Li
Kazutomo Yoshii
Khalid Ayed Alharthi
Franck Cappello
AI4CE
93
16
0
03 Apr 2024
A General Framework for Progressive Data Compression and Retrieval
A General Framework for Progressive Data Compression and Retrieval
V. Magri
P. Lindstrom
47
5
0
07 Aug 2023
FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing
  Applications on GPUs
FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs
Bo Zhang
Jiannan Tian
Sheng Di
Xiaodong Yu
Yunhe Feng
Xin Liang
Dingwen Tao
Franck Cappello
50
21
0
25 Apr 2023
Improving Energy Saving of One-sided Matrix Decompositions on CPU-GPU
  Heterogeneous Systems
Improving Energy Saving of One-sided Matrix Decompositions on CPU-GPU Heterogeneous Systems
Jieyang Chen
Xin Liang
Kai Zhao
H. Sabzi
L. Bhuyan
Zizhong Chen
52
4
0
09 Jan 2023
Optimizing Huffman Decoding for Error-Bounded Lossy Compression on GPUs
Optimizing Huffman Decoding for Error-Bounded Lossy Compression on GPUs
Cody Rivera
Sheng Di
Jiannan Tian
Xiaodong Yu
Dingwen Tao
Franck Cappello
40
9
0
22 Jan 2022
Efficient Data Compression for 3D Sparse TPC via Bicephalous
  Convolutional Autoencoder
Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder
Yi Huang
Yihui Ren
Shinjae Yoo
Jin-zhi Huang
40
10
0
09 Nov 2021
Scalable Multigrid-based Hierarchical Scientific Data Refactoring on
  GPUs
Scalable Multigrid-based Hierarchical Scientific Data Refactoring on GPUs
Jieyang Chen
Lipeng Wan
Xin Liang
Ben Whitney
Qing Liu
...
J. Choi
M. Wolf
T. Munson
Ian Foster
S. Klasky
20
1
0
26 May 2021
1