ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06437
  4. Cited By
A Provably Efficient Sample Collection Strategy for Reinforcement
  Learning

A Provably Efficient Sample Collection Strategy for Reinforcement Learning

13 July 2020
Jean Tarbouriech
Matteo Pirotta
Michal Valko
A. Lazaric
    OffRL
ArXivPDFHTML

Papers citing "A Provably Efficient Sample Collection Strategy for Reinforcement Learning"

4 / 4 papers shown
Title
Layered State Discovery for Incremental Autonomous Exploration
Layered State Discovery for Incremental Autonomous Exploration
Liyu Chen
Andrea Tirinzoni
A. Lazaric
Matteo Pirotta
34
0
0
07 Feb 2023
Regret Bounds for Stochastic Shortest Path Problems with Linear Function
  Approximation
Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation
Daniel Vial
Advait Parulekar
Sanjay Shakkottai
R. Srikant
37
15
0
04 May 2021
Reward-Free Exploration for Reinforcement Learning
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
112
194
0
07 Feb 2020
Model-free Reinforcement Learning in Infinite-horizon Average-reward
  Markov Decision Processes
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Hiteshi Sharma
R. Jain
107
99
0
15 Oct 2019
1